test_per_token_group_quant_fp8.py 4.63 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import itertools
from typing import Any, Dict, List, Optional, Tuple

import pytest
import torch
import triton
import triton.language as tl
from sgl_kernel import sgl_per_token_group_quant_fp8

from sglang.srt.utils import get_device_core_count, get_device_name, is_hip

is_hip_ = is_hip()
fp8_type_ = torch.float8_e4m3fnuz if is_hip_ else torch.float8_e4m3fn


@triton.jit
def _per_token_group_quant_fp8(
    # Pointers to inputs and output
    y_ptr,
    y_q_ptr,
    y_s_ptr,
    # Stride of input
    y_stride,
    # Collums of input
    N,
    # Avoid to divide zero
    eps,
    # Information for float8
    fp8_min,
    fp8_max,
    # Meta-parameters
    BLOCK: tl.constexpr,
):
    """A Triton-accelerated function to perform per-token-group quantization on a
    tensor.

    This function converts the tensor values into float8 values.
    """
    # Map the program id to the row of X and Y it should compute.
    g_id = tl.program_id(0)
    y_ptr += g_id * y_stride
    y_q_ptr += g_id * y_stride
    y_s_ptr += g_id

    cols = tl.arange(0, BLOCK)  # N <= BLOCK
    mask = cols < N

    y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
    # Quant
    _absmax = tl.maximum(tl.max(tl.abs(y)), eps)
    y_s = _absmax / fp8_max
    y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)

    tl.store(y_q_ptr + cols, y_q, mask=mask)
    tl.store(y_s_ptr, y_s)


def triton_per_token_group_quant_fp8(
    x: torch.Tensor,
    group_size: int,
    eps: float = 1e-10,
    dtype: torch.dtype = fp8_type_,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Function to perform per-token-group quantization on an input tensor `x`.

    It converts the tensor values into signed float8 values and returns the
    quantized tensor along with the scaling factor used for quantization.

    Args:
        x: The input tenosr with ndim >= 2.
        group_size: The group size used for quantization.
        eps: The minimum to avoid dividing zero.
        dtype: The dype of output tensor. Note that only `torch.float8_e4m3fn` is supported for now.

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: The quantized tensor and the scaling factor for quantization.
    """
    assert (
        x.shape[-1] % group_size == 0
    ), "the last dimension of `x` cannot be divisible by `group_size`"
    assert x.is_contiguous(), "`x` is not contiguous"

    finfo = torch.finfo(dtype)
    fp8_max = finfo.max

    fp8_min = -fp8_max

    x_q = torch.empty_like(x, device=x.device, dtype=dtype)
    M = x.numel() // group_size
    N = group_size
    x_s = torch.empty(
        x.shape[:-1] + (x.shape[-1] // group_size,),
        device=x.device,
        dtype=torch.float32,
    )

    BLOCK = triton.next_power_of_2(N)
    # heuristics for number of warps
    num_warps = min(max(BLOCK // 256, 1), 8)
    num_stages = 1
    _per_token_group_quant_fp8[(M,)](
        x,
        x_q,
        x_s,
        group_size,
        N,
        eps,
        fp8_min=fp8_min,
        fp8_max=fp8_max,
        BLOCK=BLOCK,
        num_warps=num_warps,
        num_stages=num_stages,
    )

    return x_q, x_s


def sglang_per_token_group_quant_fp8(
    x: torch.Tensor,
    group_size: int,
    eps: float = 1e-10,
    dtype: torch.dtype = fp8_type_,
):
    assert (
        x.shape[-1] % group_size == 0
    ), "the last dimension of `x` cannot be divisible by `group_size`"
    assert x.is_contiguous(), "`x` is not contiguous"

    finfo = torch.finfo(dtype)
    fp8_max = finfo.max

    fp8_min = -fp8_max

    x_q = torch.empty_like(x, device=x.device, dtype=dtype)
    M = x.numel() // group_size
    N = group_size
    x_s = torch.empty(
        x.shape[:-1] + (x.shape[-1] // group_size,),
        device=x.device,
        dtype=torch.float32,
    )

    sgl_per_token_group_quant_fp8(x, x_q, x_s, group_size, eps, fp8_min, fp8_max)

    return x_q, x_s


@pytest.mark.parametrize(
    "batch_size, seq_len, group_size",
    list(
        itertools.product(
            [1, 2, 4, 8, 16],  # batch_size
            [64, 128, 256, 512, 1024, 2048],  # seq_len
            [64, 128, 256],  # group_size
        )
    ),
)
def test_per_token_group_quant_compare_implementations(batch_size, seq_len, group_size):
    x = torch.randn(
        (batch_size, seq_len, group_size * 2), device="cuda", dtype=torch.float16
    )

    x_q_triton, x_s_triton = triton_per_token_group_quant_fp8(x, group_size)
    x_q_sglang, x_s_sglang = sglang_per_token_group_quant_fp8(x, group_size)

    assert torch.allclose(
        x_q_triton.to(torch.float32), x_q_sglang.to(torch.float32), rtol=1e-3, atol=1e-5
    )
    assert torch.allclose(x_s_triton, x_s_sglang, rtol=1e-3, atol=1e-5)


if __name__ == "__main__":
    pytest.main([__file__])