import itertools from typing import Any, Dict, List, Optional, Tuple import pytest import torch import triton import triton.language as tl from sgl_kernel import sgl_per_token_group_quant_fp8 from sglang.srt.utils import get_device_core_count, get_device_name, is_hip is_hip_ = is_hip() fp8_type_ = torch.float8_e4m3fnuz if is_hip_ else torch.float8_e4m3fn @triton.jit def _per_token_group_quant_fp8( # Pointers to inputs and output y_ptr, y_q_ptr, y_s_ptr, # Stride of input y_stride, # Collums of input N, # Avoid to divide zero eps, # Information for float8 fp8_min, fp8_max, # Meta-parameters BLOCK: tl.constexpr, ): """A Triton-accelerated function to perform per-token-group quantization on a tensor. This function converts the tensor values into float8 values. """ # Map the program id to the row of X and Y it should compute. g_id = tl.program_id(0) y_ptr += g_id * y_stride y_q_ptr += g_id * y_stride y_s_ptr += g_id cols = tl.arange(0, BLOCK) # N <= BLOCK mask = cols < N y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32) # Quant _absmax = tl.maximum(tl.max(tl.abs(y)), eps) y_s = _absmax / fp8_max y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty) tl.store(y_q_ptr + cols, y_q, mask=mask) tl.store(y_s_ptr, y_s) def triton_per_token_group_quant_fp8( x: torch.Tensor, group_size: int, eps: float = 1e-10, dtype: torch.dtype = fp8_type_, ) -> Tuple[torch.Tensor, torch.Tensor]: """Function to perform per-token-group quantization on an input tensor `x`. It converts the tensor values into signed float8 values and returns the quantized tensor along with the scaling factor used for quantization. Args: x: The input tenosr with ndim >= 2. group_size: The group size used for quantization. eps: The minimum to avoid dividing zero. dtype: The dype of output tensor. Note that only `torch.float8_e4m3fn` is supported for now. Returns: Tuple[torch.Tensor, torch.Tensor]: The quantized tensor and the scaling factor for quantization. """ assert ( x.shape[-1] % group_size == 0 ), "the last dimension of `x` cannot be divisible by `group_size`" assert x.is_contiguous(), "`x` is not contiguous" finfo = torch.finfo(dtype) fp8_max = finfo.max fp8_min = -fp8_max x_q = torch.empty_like(x, device=x.device, dtype=dtype) M = x.numel() // group_size N = group_size x_s = torch.empty( x.shape[:-1] + (x.shape[-1] // group_size,), device=x.device, dtype=torch.float32, ) BLOCK = triton.next_power_of_2(N) # heuristics for number of warps num_warps = min(max(BLOCK // 256, 1), 8) num_stages = 1 _per_token_group_quant_fp8[(M,)]( x, x_q, x_s, group_size, N, eps, fp8_min=fp8_min, fp8_max=fp8_max, BLOCK=BLOCK, num_warps=num_warps, num_stages=num_stages, ) return x_q, x_s def sglang_per_token_group_quant_fp8( x: torch.Tensor, group_size: int, eps: float = 1e-10, dtype: torch.dtype = fp8_type_, ): assert ( x.shape[-1] % group_size == 0 ), "the last dimension of `x` cannot be divisible by `group_size`" assert x.is_contiguous(), "`x` is not contiguous" finfo = torch.finfo(dtype) fp8_max = finfo.max fp8_min = -fp8_max x_q = torch.empty_like(x, device=x.device, dtype=dtype) M = x.numel() // group_size N = group_size x_s = torch.empty( x.shape[:-1] + (x.shape[-1] // group_size,), device=x.device, dtype=torch.float32, ) sgl_per_token_group_quant_fp8(x, x_q, x_s, group_size, eps, fp8_min, fp8_max) return x_q, x_s @pytest.mark.parametrize( "batch_size, seq_len, group_size", list( itertools.product( [1, 2, 4, 8, 16], # batch_size [64, 128, 256, 512, 1024, 2048], # seq_len [64, 128, 256], # group_size ) ), ) def test_per_token_group_quant_compare_implementations(batch_size, seq_len, group_size): x = torch.randn( (batch_size, seq_len, group_size * 2), device="cuda", dtype=torch.float16 ) x_q_triton, x_s_triton = triton_per_token_group_quant_fp8(x, group_size) x_q_sglang, x_s_sglang = sglang_per_token_group_quant_fp8(x, group_size) assert torch.allclose( x_q_triton.to(torch.float32), x_q_sglang.to(torch.float32), rtol=1e-3, atol=1e-5 ) assert torch.allclose(x_s_triton, x_s_sglang, rtol=1e-3, atol=1e-5) if __name__ == "__main__": pytest.main([__file__])