"vscode:/vscode.git/clone" did not exist on "7da249fcc12adf158343b902d054e1b141316ea7"
test_kvcacheio.py 9.4 KB
Newer Older
1
2
3
4
5
import pytest
import torch
from sgl_kernel.kvcacheio import (
    transfer_kv_all_layer,
    transfer_kv_all_layer_mla,
6
    transfer_kv_direct,
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    transfer_kv_per_layer,
    transfer_kv_per_layer_mla,
)


def ref_copy_with_indices(src_pool, dst_pool, src_indices, dst_indices):
    dst_pool[dst_indices] = src_pool[src_indices].to(dst_pool.device)


@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("num_items_to_transfer", [1, 128, 1024])
@pytest.mark.parametrize("page_size", [1, 16, 64])
@pytest.mark.parametrize("item_size", [256])
@pytest.mark.parametrize("total_items_in_pool", [10240])
@pytest.mark.parametrize("is_mla", [False, True])
@pytest.mark.parametrize("all_layers", [False, True])
def test_transfer_kv(
    dtype: torch.dtype,
    num_items_to_transfer: int,
    item_size: int,
    page_size: int,
    total_items_in_pool: int,
    is_mla: bool,
    all_layers: bool,
):
    """
    Tests the per-layer transfer functions, treating tensors as memory pools.
    """

    original_dtype = torch.get_default_dtype()
    torch.set_default_dtype(dtype)
    device = "cuda"
    torch.cuda.manual_seed(42)

    num_layers = 4  # A small number of layers for pool creation

    total_pages_in_pool = total_items_in_pool // page_size
    num_pages_to_transfer = num_items_to_transfer // page_size
    if num_pages_to_transfer == 0:
        torch.set_default_dtype(original_dtype)
        return
    page_indices = torch.randperm(total_pages_in_pool, dtype=torch.int64)
    src_indices_host = torch.cat(
        [
            torch.arange(p * page_size, (p + 1) * page_size)
            for p in page_indices[:num_pages_to_transfer]
        ]
    )
    src_indices_device = src_indices_host.to(device)
    dst_indices_host = torch.cat(
        [
            torch.arange(p * page_size, (p + 1) * page_size)
            for p in page_indices[num_pages_to_transfer : 2 * num_pages_to_transfer]
        ]
    )
    dst_indices_device = dst_indices_host.to(device)

    # Prepare memory pools based on whether it's an MLA case.
    if is_mla:
        src_pool_host = torch.randn(
            num_layers, total_items_in_pool, item_size
        ).pin_memory()
        dst_pool_ref = torch.zeros_like(src_pool_host).to(device)
        dst_pool_kernel = torch.zeros_like(dst_pool_ref)
        dst_pool_direct = torch.zeros_like(dst_pool_ref)
    else:
        src_k_pool = torch.randn(
            num_layers, total_items_in_pool, item_size
        ).pin_memory()
        src_v_pool = torch.randn(
            num_layers, total_items_in_pool, item_size
        ).pin_memory()
        dst_k_pool_ref = torch.zeros_like(src_k_pool).to(device)
        dst_v_pool_ref = torch.zeros_like(src_v_pool).to(device)
        dst_k_pool_kernel = torch.zeros_like(dst_k_pool_ref)
        dst_v_pool_kernel = torch.zeros_like(dst_v_pool_ref)
        dst_k_pool_direct = torch.zeros_like(dst_k_pool_ref)
        dst_v_pool_direct = torch.zeros_like(dst_v_pool_ref)

    torch.cuda.synchronize()

    # We will test the per-layer function on the first layer (index 0) of the pool.
    layer_idx_to_test = 0

    if is_mla:
        if not all_layers:
            ref_copy_with_indices(
                src_pool_host[layer_idx_to_test],
                dst_pool_ref[layer_idx_to_test],
                src_indices_host,
                dst_indices_device,
            )
            transfer_kv_per_layer_mla(
                src_pool_host[layer_idx_to_test],
                dst_pool_kernel[layer_idx_to_test],
                src_indices_device,
                dst_indices_device,
                io_backend="kernel",
                page_size=page_size,
                item_size=item_size,
            )
108
109
110
            transfer_kv_direct(
                [src_pool_host[layer_idx_to_test]],
                [dst_pool_direct[layer_idx_to_test]],
111
112
113
114
115
116
117
118
119
120
121
122
                src_indices_host,
                dst_indices_device,
                page_size=page_size,
            )
        else:
            for layer_id in range(num_layers):
                ref_copy_with_indices(
                    src_pool_host[layer_id],
                    dst_pool_ref[layer_id],
                    src_indices_host,
                    dst_indices_device,
                )
123
124
125
126
127
128
129
130
131
132
133
134
135
            src_layers_device = torch.tensor(
                [src_pool_host[layer_id].data_ptr() for layer_id in range(num_layers)],
                dtype=torch.uint64,
                device=device,
            )
            dst_layers_device = torch.tensor(
                [
                    dst_pool_kernel[layer_id].data_ptr()
                    for layer_id in range(num_layers)
                ],
                dtype=torch.uint64,
                device=device,
            )
136
            transfer_kv_all_layer_mla(
137
138
                src_layers_device,
                dst_layers_device,
139
140
141
                src_indices_device,
                dst_indices_device,
                io_backend="kernel",
142
                item_size=item_size * dtype.itemsize,
143
144
                num_layers=num_layers,
            )
145
146
147
            transfer_kv_direct(
                [src_pool_host[layer_id] for layer_id in range(num_layers)],
                [dst_pool_direct[layer_id] for layer_id in range(num_layers)],
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
                src_indices_host,
                dst_indices_device,
                page_size=page_size,
            )
        torch.cuda.synchronize()
        torch.testing.assert_close(dst_pool_kernel, dst_pool_ref)
        torch.testing.assert_close(dst_pool_direct, dst_pool_ref)
    else:
        if not all_layers:
            ref_copy_with_indices(
                src_k_pool[layer_idx_to_test],
                dst_k_pool_ref[layer_idx_to_test],
                src_indices_host,
                dst_indices_device,
            )
            ref_copy_with_indices(
                src_v_pool[layer_idx_to_test],
                dst_v_pool_ref[layer_idx_to_test],
                src_indices_host,
                dst_indices_device,
            )
            transfer_kv_per_layer(
                src_k_pool[layer_idx_to_test],
                dst_k_pool_kernel[layer_idx_to_test],
                src_v_pool[layer_idx_to_test],
                dst_v_pool_kernel[layer_idx_to_test],
                src_indices_device,
                dst_indices_device,
                io_backend="kernel",
                page_size=page_size,
                item_size=item_size,
            )
180
181
182
183
184
185
            transfer_kv_direct(
                [src_k_pool[layer_idx_to_test], src_v_pool[layer_idx_to_test]],
                [
                    dst_k_pool_direct[layer_idx_to_test],
                    dst_v_pool_direct[layer_idx_to_test],
                ],
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
                src_indices_host,
                dst_indices_device,
                page_size=page_size,
            )
        else:
            for layer_id in range(num_layers):
                ref_copy_with_indices(
                    src_k_pool[layer_id],
                    dst_k_pool_ref[layer_id],
                    src_indices_host,
                    dst_indices_device,
                )
                ref_copy_with_indices(
                    src_v_pool[layer_id],
                    dst_v_pool_ref[layer_id],
                    src_indices_host,
                    dst_indices_device,
                )
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

            src_k_layers_device = torch.tensor(
                [src_k_pool[layer_id].data_ptr() for layer_id in range(num_layers)],
                dtype=torch.uint64,
                device=device,
            )
            src_v_layers_device = torch.tensor(
                [src_v_pool[layer_id].data_ptr() for layer_id in range(num_layers)],
                dtype=torch.uint64,
                device=device,
            )
            dst_k_layers_device = torch.tensor(
                [
                    dst_k_pool_kernel[layer_id].data_ptr()
                    for layer_id in range(num_layers)
                ],
                dtype=torch.uint64,
                device=device,
            )
            dst_v_layers_device = torch.tensor(
                [
                    dst_v_pool_kernel[layer_id].data_ptr()
                    for layer_id in range(num_layers)
                ],
                dtype=torch.uint64,
                device=device,
            )
231
            transfer_kv_all_layer(
232
233
234
235
                src_k_layers_device,
                dst_k_layers_device,
                src_v_layers_device,
                dst_v_layers_device,
236
237
238
                src_indices_device,
                dst_indices_device,
                io_backend="kernel",
239
                item_size=item_size * dtype.itemsize,
240
241
                num_layers=num_layers,
            )
242
243
244
245
246
            transfer_kv_direct(
                [src_k_pool[layer_id] for layer_id in range(num_layers)]
                + [src_v_pool[layer_id] for layer_id in range(num_layers)],
                [dst_k_pool_direct[layer_id] for layer_id in range(num_layers)]
                + [dst_v_pool_direct[layer_id] for layer_id in range(num_layers)],
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
                src_indices_host,
                dst_indices_device,
                page_size=page_size,
            )
        torch.cuda.synchronize()
        torch.testing.assert_close(dst_k_pool_kernel, dst_k_pool_ref)
        torch.testing.assert_close(dst_v_pool_kernel, dst_v_pool_ref)
        torch.testing.assert_close(dst_k_pool_direct, dst_k_pool_ref)
        torch.testing.assert_close(dst_v_pool_direct, dst_v_pool_ref)

    torch.set_default_dtype(original_dtype)


if __name__ == "__main__":
    pytest.main([__file__])