test_kvcacheio.py 8.54 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import pytest
import torch
from sgl_kernel.kvcacheio import (
    transfer_kv_all_layer,
    transfer_kv_all_layer_mla,
    transfer_kv_per_layer,
    transfer_kv_per_layer_mla,
)


def ref_copy_with_indices(src_pool, dst_pool, src_indices, dst_indices):
    dst_pool[dst_indices] = src_pool[src_indices].to(dst_pool.device)


@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("num_items_to_transfer", [1, 128, 1024])
@pytest.mark.parametrize("page_size", [1, 16, 64])
@pytest.mark.parametrize("item_size", [256])
@pytest.mark.parametrize("total_items_in_pool", [10240])
@pytest.mark.parametrize("is_mla", [False, True])
@pytest.mark.parametrize("all_layers", [False, True])
def test_transfer_kv(
    dtype: torch.dtype,
    num_items_to_transfer: int,
    item_size: int,
    page_size: int,
    total_items_in_pool: int,
    is_mla: bool,
    all_layers: bool,
):
    """
    Tests the per-layer transfer functions, treating tensors as memory pools.
    """

    original_dtype = torch.get_default_dtype()
    torch.set_default_dtype(dtype)
    device = "cuda"
    torch.cuda.manual_seed(42)

    num_layers = 4  # A small number of layers for pool creation

    total_pages_in_pool = total_items_in_pool // page_size
    num_pages_to_transfer = num_items_to_transfer // page_size
    if num_pages_to_transfer == 0:
        torch.set_default_dtype(original_dtype)
        return
    page_indices = torch.randperm(total_pages_in_pool, dtype=torch.int64)
    src_indices_host = torch.cat(
        [
            torch.arange(p * page_size, (p + 1) * page_size)
            for p in page_indices[:num_pages_to_transfer]
        ]
    )
    src_indices_device = src_indices_host.to(device)
    dst_indices_host = torch.cat(
        [
            torch.arange(p * page_size, (p + 1) * page_size)
            for p in page_indices[num_pages_to_transfer : 2 * num_pages_to_transfer]
        ]
    )
    dst_indices_device = dst_indices_host.to(device)

    # Prepare memory pools based on whether it's an MLA case.
    if is_mla:
        src_pool_host = torch.randn(
            num_layers, total_items_in_pool, item_size
        ).pin_memory()
        dst_pool_ref = torch.zeros_like(src_pool_host).to(device)
        dst_pool_kernel = torch.zeros_like(dst_pool_ref)
        dst_pool_direct = torch.zeros_like(dst_pool_ref)
    else:
        src_k_pool = torch.randn(
            num_layers, total_items_in_pool, item_size
        ).pin_memory()
        src_v_pool = torch.randn(
            num_layers, total_items_in_pool, item_size
        ).pin_memory()
        dst_k_pool_ref = torch.zeros_like(src_k_pool).to(device)
        dst_v_pool_ref = torch.zeros_like(src_v_pool).to(device)
        dst_k_pool_kernel = torch.zeros_like(dst_k_pool_ref)
        dst_v_pool_kernel = torch.zeros_like(dst_v_pool_ref)
        dst_k_pool_direct = torch.zeros_like(dst_k_pool_ref)
        dst_v_pool_direct = torch.zeros_like(dst_v_pool_ref)

    torch.cuda.synchronize()

    # We will test the per-layer function on the first layer (index 0) of the pool.
    layer_idx_to_test = 0

    if is_mla:
        if not all_layers:
            ref_copy_with_indices(
                src_pool_host[layer_idx_to_test],
                dst_pool_ref[layer_idx_to_test],
                src_indices_host,
                dst_indices_device,
            )
            transfer_kv_per_layer_mla(
                src_pool_host[layer_idx_to_test],
                dst_pool_kernel[layer_idx_to_test],
                src_indices_device,
                dst_indices_device,
                io_backend="kernel",
                page_size=page_size,
                item_size=item_size,
            )
            transfer_kv_per_layer_mla(
                src_pool_host[layer_idx_to_test],
                dst_pool_direct[layer_idx_to_test],
                src_indices_host,
                dst_indices_device,
                io_backend="direct",
                page_size=page_size,
                item_size=item_size,
            )
        else:
            for layer_id in range(num_layers):
                ref_copy_with_indices(
                    src_pool_host[layer_id],
                    dst_pool_ref[layer_id],
                    src_indices_host,
                    dst_indices_device,
                )
            transfer_kv_all_layer_mla(
                src_pool_host,
                dst_pool_kernel,
                src_indices_device,
                dst_indices_device,
                io_backend="kernel",
                page_size=page_size,
                item_size=item_size,
                num_layers=num_layers,
                src_layer_offset=total_items_in_pool * item_size,
                dst_layer_offset=total_items_in_pool * item_size,
            )
            transfer_kv_all_layer_mla(
                src_pool_host,
                dst_pool_direct,
                src_indices_host,
                dst_indices_device,
                io_backend="direct",
                page_size=page_size,
                item_size=item_size,
                num_layers=num_layers,
                src_layer_offset=total_items_in_pool * item_size,
                dst_layer_offset=total_items_in_pool * item_size,
            )
        torch.cuda.synchronize()
        torch.testing.assert_close(dst_pool_kernel, dst_pool_ref)
        torch.testing.assert_close(dst_pool_direct, dst_pool_ref)
    else:
        if not all_layers:
            ref_copy_with_indices(
                src_k_pool[layer_idx_to_test],
                dst_k_pool_ref[layer_idx_to_test],
                src_indices_host,
                dst_indices_device,
            )
            ref_copy_with_indices(
                src_v_pool[layer_idx_to_test],
                dst_v_pool_ref[layer_idx_to_test],
                src_indices_host,
                dst_indices_device,
            )
            transfer_kv_per_layer(
                src_k_pool[layer_idx_to_test],
                dst_k_pool_kernel[layer_idx_to_test],
                src_v_pool[layer_idx_to_test],
                dst_v_pool_kernel[layer_idx_to_test],
                src_indices_device,
                dst_indices_device,
                io_backend="kernel",
                page_size=page_size,
                item_size=item_size,
            )
            transfer_kv_per_layer(
                src_k_pool[layer_idx_to_test],
                dst_k_pool_direct[layer_idx_to_test],
                src_v_pool[layer_idx_to_test],
                dst_v_pool_direct[layer_idx_to_test],
                src_indices_host,
                dst_indices_device,
                io_backend="direct",
                page_size=page_size,
                item_size=item_size,
            )
        else:
            for layer_id in range(num_layers):
                ref_copy_with_indices(
                    src_k_pool[layer_id],
                    dst_k_pool_ref[layer_id],
                    src_indices_host,
                    dst_indices_device,
                )
                ref_copy_with_indices(
                    src_v_pool[layer_id],
                    dst_v_pool_ref[layer_id],
                    src_indices_host,
                    dst_indices_device,
                )
            transfer_kv_all_layer(
                src_k_pool,
                dst_k_pool_kernel,
                src_v_pool,
                dst_v_pool_kernel,
                src_indices_device,
                dst_indices_device,
                io_backend="kernel",
                page_size=page_size,
                item_size=item_size,
                num_layers=num_layers,
                src_layer_offset=total_items_in_pool * item_size,
                dst_layer_offset=total_items_in_pool * item_size,
            )
            transfer_kv_all_layer(
                src_k_pool,
                dst_k_pool_direct,
                src_v_pool,
                dst_v_pool_direct,
                src_indices_host,
                dst_indices_device,
                io_backend="direct",
                page_size=page_size,
                item_size=item_size,
                num_layers=num_layers,
                src_layer_offset=total_items_in_pool * item_size,
                dst_layer_offset=total_items_in_pool * item_size,
            )
        torch.cuda.synchronize()
        torch.testing.assert_close(dst_k_pool_kernel, dst_k_pool_ref)
        torch.testing.assert_close(dst_v_pool_kernel, dst_v_pool_ref)
        torch.testing.assert_close(dst_k_pool_direct, dst_k_pool_ref)
        torch.testing.assert_close(dst_v_pool_direct, dst_v_pool_ref)

    torch.set_default_dtype(original_dtype)


if __name__ == "__main__":
    pytest.main([__file__])