transfer.cu 13.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAException.h>
#include <c10/util/irange.h>

#include <cstdint>

#include "pytorch_extension_utils.h"

__device__ __forceinline__ void
transfer_item_warp(int32_t lane_id, const void* src_addr, void* dst_addr, int64_t item_size_bytes) {
  // todo, different chunk size
  int total_chunks = item_size_bytes / 8;
  const int64_t* src_8 = reinterpret_cast<const int64_t*>(src_addr);
  int64_t* dst_8 = reinterpret_cast<int64_t*>(dst_addr);
#pragma unroll
  for (int j = lane_id; j < total_chunks; j += 32) {
    const int64_t* src_addr_lane = &src_8[j];
    int64_t* dst_addr_lane = &dst_8[j];
    int64_t temp_val;
    asm volatile("ld.global.nc.b64 %0, [%1];" : "=l"(temp_val) : "l"(src_addr_lane) : "memory");
    asm volatile("st.global.cg.b64 [%0], %1;" ::"l"(dst_addr_lane), "l"(temp_val) : "memory");
  }
}

25
26
27
28
29
30
31
32
template <typename T>
__device__ __forceinline__ T* get_global_offset_lf(
    T* base,
    const uintptr_t* __restrict__ /*unused*/,
    int64_t layer_id,
    int64_t layer_dim,
    int64_t page_id,
    int64_t item_size_bytes) {
33
  // layer first
34
  return base + layer_id * layer_dim + page_id * item_size_bytes;
35
36
}

37
38
39
40
41
42
43
44
template <typename T>
__device__ __forceinline__ T* get_global_offset_pf(
    T* base,
    const uintptr_t* __restrict__ /*unused*/,
    int64_t layer_id,
    int64_t page_dim,
    int64_t page_id,
    int64_t item_size_bytes) {
45
  // page first
46
47
48
49
50
51
52
53
54
55
56
57
58
  return base + page_id * page_dim + layer_id * item_size_bytes;
}

// get offset from layer base table when layers are not contiguous
template <typename T>
__device__ __forceinline__ T* get_global_offset_lf_tbl(
    T* /*unused*/,
    const uintptr_t* __restrict__ layer_base_tbl,
    int64_t layer_id,
    int64_t /*unused*/,
    int64_t page_id,
    int64_t item_size_bytes) {
  return reinterpret_cast<T*>(layer_base_tbl[layer_id]) + page_id * item_size_bytes;
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
}

template <auto SrcOffsetFn, auto DstOffsetFn, bool IsMLA>
__global__ void transfer_kernel_impl(
    const void* __restrict__ src_k,
    void* __restrict__ dst_k,
    const void* __restrict__ src_v,
    void* __restrict__ dst_v,
    const int64_t* __restrict__ src_indices,
    const int64_t* __restrict__ dst_indices,
    int64_t start_layer_id,
    int64_t num_layers_to_process,
    int64_t num_items,
    int64_t items_per_warp,
    int64_t item_size_bytes,
    int64_t src_layout_dim,
75
76
77
78
79
    int64_t dst_layout_dim,
    const uintptr_t* __restrict__ src_k_layer_tbl,
    const uintptr_t* __restrict__ dst_k_layer_tbl,
    const uintptr_t* __restrict__ src_v_layer_tbl,
    const uintptr_t* __restrict__ dst_v_layer_tbl) {
80
81
82
83
84
  int32_t tid = blockIdx.x * blockDim.x + threadIdx.x;
  int32_t lane_id = tid % 32;
  int32_t warp_id = tid / 32;

  for (int i = 0; i < items_per_warp; ++i) {
85
    int64_t item_id = warp_id * items_per_warp + i;
86
    if (item_id >= num_items) {
87
      break;
88
89
90
91
92
93
    }
    const int64_t src_page_id = src_indices[item_id];
    const int64_t dst_page_id = dst_indices[item_id];

    // Loop over layers if necessary
    for (int64_t layer_id = start_layer_id; layer_id < start_layer_id + num_layers_to_process; ++layer_id) {
94
95
96
97
98
      const char* src_ptr = SrcOffsetFn(
          static_cast<const char*>(src_k), src_k_layer_tbl, layer_id, src_layout_dim, src_page_id, item_size_bytes);
      char* dst_ptr = DstOffsetFn(
          static_cast<char*>(dst_k), dst_k_layer_tbl, layer_id, dst_layout_dim, dst_page_id, item_size_bytes);
      transfer_item_warp(lane_id, src_ptr, dst_ptr, item_size_bytes);
99

100
101
102
103
104
105
      if constexpr (!IsMLA) {
        const char* src_v_ptr = SrcOffsetFn(
            static_cast<const char*>(src_v), src_v_layer_tbl, layer_id, src_layout_dim, src_page_id, item_size_bytes);
        char* dst_v_ptr = DstOffsetFn(
            static_cast<char*>(dst_v), dst_v_layer_tbl, layer_id, dst_layout_dim, dst_page_id, item_size_bytes);
        transfer_item_warp(lane_id, src_v_ptr, dst_v_ptr, item_size_bytes);
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
      }
    }
  }
}

template <auto SrcOffsetFn, auto DstOffsetFn, bool IsMLA>
void transfer_kv_launcher(
    const at::Tensor& src_k,
    at::Tensor& dst_k,
    const at::Tensor& src_v,
    at::Tensor& dst_v,
    const at::Tensor& src_indices,
    const at::Tensor& dst_indices,
    int64_t start_layer_id,
    int64_t num_layers_to_process,
    int64_t item_size,
    int64_t src_layout_dim,
    int64_t dst_layout_dim,
124
125
126
127
    const at::Tensor& src_k_layers,
    const at::Tensor& dst_k_layers,
    const at::Tensor& src_v_layers,
    const at::Tensor& dst_v_layers,
128
129
130
131
132
133
134
    int64_t block_quota,
    int64_t num_warps_per_block) {
  TORCH_CHECK(src_indices.is_cuda(), "Source indices must be a CUDA tensor");
  TORCH_CHECK(dst_indices.is_cuda(), "Destination indices must be a CUDA tensor");
  TORCH_CHECK(src_indices.scalar_type() == at::kLong, "Source indices must be of type long");
  TORCH_CHECK(dst_indices.scalar_type() == at::kLong, "Destination indices must be of type long");
  TORCH_CHECK(src_indices.numel() == dst_indices.numel(), "Source and destination indices must have the same length");
135
  TORCH_CHECK(item_size % 8 == 0, "Item byte size must be divisible by 8");
136

137
  auto div_up = [](int64_t x, int64_t y) { return (x + y - 1) / y; };
138
139
140
141
142
143
  const int64_t num_items = src_indices.numel();
  const int64_t items_per_warp = div_up(num_items, block_quota * num_warps_per_block);
  const int32_t num_blocks = div_up(num_items, items_per_warp * num_warps_per_block);
  dim3 grid_dim(num_blocks, 1, 1);
  const int32_t threads_per_block = num_warps_per_block * 32;

144
145
146
147
148
149
150
151
152
  const void* src_k_ptr = src_k.defined() ? src_k.data_ptr() : nullptr;
  void* dst_k_ptr = dst_k.defined() ? dst_k.data_ptr() : nullptr;
  const void* src_v_ptr = IsMLA || !src_v.defined() ? nullptr : src_v.data_ptr();
  void* dst_v_ptr = IsMLA || !dst_v.defined() ? nullptr : dst_v.data_ptr();
  const uintptr_t* src_k_tbl_ptr = src_k_layers.defined() ? src_k_layers.data_ptr<uintptr_t>() : nullptr;
  const uintptr_t* dst_k_tbl_ptr = dst_k_layers.defined() ? dst_k_layers.data_ptr<uintptr_t>() : nullptr;
  const uintptr_t* src_v_tbl_ptr = IsMLA || !src_v_layers.defined() ? nullptr : src_v_layers.data_ptr<uintptr_t>();
  const uintptr_t* dst_v_tbl_ptr = IsMLA || !dst_v_layers.defined() ? nullptr : dst_v_layers.data_ptr<uintptr_t>();

153
154
  cudaStream_t torch_current_stream = at::cuda::getCurrentCUDAStream();
  transfer_kernel_impl<SrcOffsetFn, DstOffsetFn, IsMLA><<<grid_dim, threads_per_block, 0, torch_current_stream>>>(
155
156
157
158
      src_k_ptr,
      dst_k_ptr,
      src_v_ptr,
      dst_v_ptr,
159
160
161
162
163
164
      src_indices.data_ptr<int64_t>(),
      dst_indices.data_ptr<int64_t>(),
      start_layer_id,
      num_layers_to_process,
      num_items,
      items_per_warp,
165
166
167
168
169
170
171
      item_size,
      src_layout_dim,
      dst_layout_dim,
      src_k_tbl_ptr,
      dst_k_tbl_ptr,
      src_v_tbl_ptr,
      dst_v_tbl_ptr);
172
173
174
175
176
177
178
179
180
181
182
183
184
  C10_CUDA_KERNEL_LAUNCH_CHECK();
}

void transfer_kv_per_layer(
    const at::Tensor src_k,
    at::Tensor dst_k,
    const at::Tensor src_v,
    at::Tensor dst_v,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
    int64_t block_quota,
    int64_t num_warps_per_block) {
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
  at::Tensor empty;
  transfer_kv_launcher<get_global_offset_lf<const char>, get_global_offset_lf<char>, false>(
      src_k,
      dst_k,
      src_v,
      dst_v,
      src_indices,
      dst_indices,
      0,
      1,
      item_size,
      0,
      0,
      empty,
      empty,
      empty,
      empty,
      block_quota,
      num_warps_per_block);
204
205
}

206
void transfer_kv_per_layer_pf_lf(
207
208
209
210
211
212
213
    const at::Tensor src_k,
    at::Tensor dst_k,
    const at::Tensor src_v,
    at::Tensor dst_v,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
214
    int64_t src_layout_dim,
215
216
    int64_t block_quota,
    int64_t num_warps_per_block) {
217
218
  at::Tensor empty;
  transfer_kv_launcher<get_global_offset_pf<const char>, get_global_offset_lf<char>, false>(
219
220
221
222
223
224
225
      src_k,
      dst_k,
      src_v,
      dst_v,
      src_indices,
      dst_indices,
      0,
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
      1,
      item_size,
      src_layout_dim,
      0,
      empty,
      empty,
      empty,
      empty,
      block_quota,
      num_warps_per_block);
}

void transfer_kv_all_layer(
    const at::Tensor src_k_layers,
    const at::Tensor dst_k_layers,
    const at::Tensor src_v_layers,
    const at::Tensor dst_v_layers,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
    int64_t num_layers,
    int64_t block_quota,
    int64_t num_warps_per_block) {
  TORCH_CHECK(num_layers == src_k_layers.size(0), "Number of layers in source k tensor does not match num_layers");
  at::Tensor empty;
  transfer_kv_launcher<get_global_offset_lf_tbl<const char>, get_global_offset_lf_tbl<char>, false>(
      empty,
      empty,
      empty,
      empty,
      src_indices,
      dst_indices,
      0,
      num_layers,
      item_size,
      0,
      0,
      src_k_layers,
      dst_k_layers,
      src_v_layers,
      dst_v_layers,
      block_quota,
      num_warps_per_block);
}

void transfer_kv_all_layer_lf_pf(
    const at::Tensor src_k_layers,
    at::Tensor dst_k,
    const at::Tensor src_v_layers,
    at::Tensor dst_v,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
    int64_t dst_layout_dim,
    int64_t num_layers,
    int64_t block_quota,
    int64_t num_warps_per_block) {
  TORCH_CHECK(num_layers == src_k_layers.size(0), "Number of layers in source k tensor does not match num_layers");
  at::Tensor empty;
  transfer_kv_launcher<get_global_offset_lf_tbl<const char>, get_global_offset_pf<char>, false>(
      empty,
      dst_k,
      empty,
      dst_v,
      src_indices,
      dst_indices,
      0,
293
294
      num_layers,
      item_size,
295
296
297
298
299
300
      0,
      dst_layout_dim,
      src_k_layers,
      empty,
      src_v_layers,
      empty,
301
302
303
304
305
306
307
308
309
310
311
312
      block_quota,
      num_warps_per_block);
}

void transfer_kv_per_layer_mla(
    const at::Tensor src,
    at::Tensor dst,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
    int64_t block_quota,
    int64_t num_warps_per_block) {
313
314
  at::Tensor empty;
  transfer_kv_launcher<get_global_offset_lf<const char>, get_global_offset_lf<char>, true>(
315
316
      src,
      dst,
317
318
      empty,
      empty,
319
320
321
322
323
324
325
      src_indices,
      dst_indices,
      0,
      1,
      item_size,
      0,
      0,
326
327
328
329
      empty,
      empty,
      empty,
      empty,
330
331
332
333
      block_quota,
      num_warps_per_block);
}

334
void transfer_kv_per_layer_mla_pf_lf(
335
336
337
338
339
    const at::Tensor src,
    at::Tensor dst,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
340
    int64_t src_layout_dim,
341
342
    int64_t block_quota,
    int64_t num_warps_per_block) {
343
344
  at::Tensor empty;
  transfer_kv_launcher<get_global_offset_pf<const char>, get_global_offset_lf<char>, true>(
345
346
      src,
      dst,
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
      empty,
      empty,
      src_indices,
      dst_indices,
      0,
      1,
      item_size,
      src_layout_dim,
      0,
      empty,
      empty,
      empty,
      empty,
      block_quota,
      num_warps_per_block);
}

void transfer_kv_all_layer_mla(
    const at::Tensor src_layers,
    const at::Tensor dst_layers,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
    int64_t num_layers,
    int64_t block_quota,
    int64_t num_warps_per_block) {
  TORCH_CHECK(num_layers == src_layers.size(0), "Number of layers in source tensor does not match num_layers");
  at::Tensor empty;
  transfer_kv_launcher<get_global_offset_lf_tbl<const char>, get_global_offset_lf_tbl<char>, true>(
      empty,
      empty,
      empty,
      empty,
      src_indices,
      dst_indices,
      0,
      num_layers,
      item_size,
      0,
      0,
      src_layers,
      dst_layers,
      empty,
      empty,
      block_quota,
      num_warps_per_block);
}

void transfer_kv_all_layer_mla_lf_pf(
    const at::Tensor src_layers,
    at::Tensor dst,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t item_size,
    int64_t dst_layout_dim,
    int64_t num_layers,
    int64_t block_quota,
    int64_t num_warps_per_block) {
  TORCH_CHECK(num_layers == src_layers.size(0), "Number of layers in source tensor does not match num_layers");
  at::Tensor empty;
  transfer_kv_launcher<get_global_offset_lf_tbl<const char>, get_global_offset_pf<char>, true>(
      empty,
      dst,
      empty,
      empty,
412
413
414
415
416
      src_indices,
      dst_indices,
      0,
      num_layers,
      item_size,
417
418
419
420
421
422
      0,
      dst_layout_dim,
      src_layers,
      empty,
      empty,
      empty,
423
424
425
426
427
      block_quota,
      num_warps_per_block);
}

inline void transfer_page_direct(
428
429
    const at::Tensor& src_buffer,
    at::Tensor& dst_buffer,
430
431
432
433
434
435
436
437
438
    int64_t src_page_index,
    int64_t dst_page_index,
    int64_t page_size) {
  dst_buffer.slice(0, dst_page_index, dst_page_index + page_size)
      .copy_(
          src_buffer.slice(0, src_page_index, src_page_index + page_size),
          /* non_blocking= */ true);
}

439
440
441
442
443
444
445
446
void transfer_kv_direct(
    const std::vector<at::Tensor>& src_layers,
    std::vector<at::Tensor> dst_layers,
    const at::Tensor src_indices,
    const at::Tensor dst_indices,
    int64_t page_size) {
  TORCH_CHECK(
      src_layers.size() == dst_layers.size(), "Source and destination layers must have the same number of layers");
447
448
449
450
451
452
453
454
  TORCH_CHECK(src_indices.numel() == dst_indices.numel(), "Source and destination indices must have the same length");
  TORCH_CHECK(page_size > 0, "Page size must be positive");
  TORCH_CHECK(src_indices.numel() % page_size == 0, "Source indices size must be divisible by page size");

  auto src_indices_cpu = src_indices.cpu();
  auto dst_indices_cpu = dst_indices.cpu();

  const int64_t num_pages = src_indices_cpu.size(0) / page_size;
455
  const int64_t num_layers = src_layers.size();
456

457
458
459
  for (int64_t i = 0; i < num_pages; ++i) {
    auto src_index = src_indices_cpu[i * page_size].item<int64_t>();
    auto dst_index = dst_indices_cpu[i * page_size].item<int64_t>();
460

461
462
    for (int64_t j = 0; j < num_layers; ++j) {
      transfer_page_direct(src_layers[j], dst_layers[j], src_index, dst_index, page_size);
463
464
465
    }
  }
}