#include #include #include #include #include "pytorch_extension_utils.h" __device__ __forceinline__ void transfer_item_warp(int32_t lane_id, const void* src_addr, void* dst_addr, int64_t item_size_bytes) { // todo, different chunk size int total_chunks = item_size_bytes / 8; const int64_t* src_8 = reinterpret_cast(src_addr); int64_t* dst_8 = reinterpret_cast(dst_addr); #pragma unroll for (int j = lane_id; j < total_chunks; j += 32) { const int64_t* src_addr_lane = &src_8[j]; int64_t* dst_addr_lane = &dst_8[j]; int64_t temp_val; asm volatile("ld.global.nc.b64 %0, [%1];" : "=l"(temp_val) : "l"(src_addr_lane) : "memory"); asm volatile("st.global.cg.b64 [%0], %1;" ::"l"(dst_addr_lane), "l"(temp_val) : "memory"); } } template __device__ __forceinline__ T* get_global_offset_lf( T* base, const uintptr_t* __restrict__ /*unused*/, int64_t layer_id, int64_t layer_dim, int64_t page_id, int64_t item_size_bytes) { // layer first return base + layer_id * layer_dim + page_id * item_size_bytes; } template __device__ __forceinline__ T* get_global_offset_pf( T* base, const uintptr_t* __restrict__ /*unused*/, int64_t layer_id, int64_t page_dim, int64_t page_id, int64_t item_size_bytes) { // page first return base + page_id * page_dim + layer_id * item_size_bytes; } // get offset from layer base table when layers are not contiguous template __device__ __forceinline__ T* get_global_offset_lf_tbl( T* /*unused*/, const uintptr_t* __restrict__ layer_base_tbl, int64_t layer_id, int64_t /*unused*/, int64_t page_id, int64_t item_size_bytes) { return reinterpret_cast(layer_base_tbl[layer_id]) + page_id * item_size_bytes; } template __global__ void transfer_kernel_impl( const void* __restrict__ src_k, void* __restrict__ dst_k, const void* __restrict__ src_v, void* __restrict__ dst_v, const int64_t* __restrict__ src_indices, const int64_t* __restrict__ dst_indices, int64_t start_layer_id, int64_t num_layers_to_process, int64_t num_items, int64_t items_per_warp, int64_t item_size_bytes, int64_t src_layout_dim, int64_t dst_layout_dim, const uintptr_t* __restrict__ src_k_layer_tbl, const uintptr_t* __restrict__ dst_k_layer_tbl, const uintptr_t* __restrict__ src_v_layer_tbl, const uintptr_t* __restrict__ dst_v_layer_tbl) { int32_t tid = blockIdx.x * blockDim.x + threadIdx.x; int32_t lane_id = tid % 32; int32_t warp_id = tid / 32; for (int i = 0; i < items_per_warp; ++i) { int64_t item_id = warp_id * items_per_warp + i; if (item_id >= num_items) { break; } const int64_t src_page_id = src_indices[item_id]; const int64_t dst_page_id = dst_indices[item_id]; // Loop over layers if necessary for (int64_t layer_id = start_layer_id; layer_id < start_layer_id + num_layers_to_process; ++layer_id) { const char* src_ptr = SrcOffsetFn( static_cast(src_k), src_k_layer_tbl, layer_id, src_layout_dim, src_page_id, item_size_bytes); char* dst_ptr = DstOffsetFn( static_cast(dst_k), dst_k_layer_tbl, layer_id, dst_layout_dim, dst_page_id, item_size_bytes); transfer_item_warp(lane_id, src_ptr, dst_ptr, item_size_bytes); if constexpr (!IsMLA) { const char* src_v_ptr = SrcOffsetFn( static_cast(src_v), src_v_layer_tbl, layer_id, src_layout_dim, src_page_id, item_size_bytes); char* dst_v_ptr = DstOffsetFn( static_cast(dst_v), dst_v_layer_tbl, layer_id, dst_layout_dim, dst_page_id, item_size_bytes); transfer_item_warp(lane_id, src_v_ptr, dst_v_ptr, item_size_bytes); } } } } template void transfer_kv_launcher( const at::Tensor& src_k, at::Tensor& dst_k, const at::Tensor& src_v, at::Tensor& dst_v, const at::Tensor& src_indices, const at::Tensor& dst_indices, int64_t start_layer_id, int64_t num_layers_to_process, int64_t item_size, int64_t src_layout_dim, int64_t dst_layout_dim, const at::Tensor& src_k_layers, const at::Tensor& dst_k_layers, const at::Tensor& src_v_layers, const at::Tensor& dst_v_layers, int64_t block_quota, int64_t num_warps_per_block) { TORCH_CHECK(src_indices.is_cuda(), "Source indices must be a CUDA tensor"); TORCH_CHECK(dst_indices.is_cuda(), "Destination indices must be a CUDA tensor"); TORCH_CHECK(src_indices.scalar_type() == at::kLong, "Source indices must be of type long"); TORCH_CHECK(dst_indices.scalar_type() == at::kLong, "Destination indices must be of type long"); TORCH_CHECK(src_indices.numel() == dst_indices.numel(), "Source and destination indices must have the same length"); TORCH_CHECK(item_size % 8 == 0, "Item byte size must be divisible by 8"); auto div_up = [](int64_t x, int64_t y) { return (x + y - 1) / y; }; const int64_t num_items = src_indices.numel(); const int64_t items_per_warp = div_up(num_items, block_quota * num_warps_per_block); const int32_t num_blocks = div_up(num_items, items_per_warp * num_warps_per_block); dim3 grid_dim(num_blocks, 1, 1); const int32_t threads_per_block = num_warps_per_block * 32; const void* src_k_ptr = src_k.defined() ? src_k.data_ptr() : nullptr; void* dst_k_ptr = dst_k.defined() ? dst_k.data_ptr() : nullptr; const void* src_v_ptr = IsMLA || !src_v.defined() ? nullptr : src_v.data_ptr(); void* dst_v_ptr = IsMLA || !dst_v.defined() ? nullptr : dst_v.data_ptr(); const uintptr_t* src_k_tbl_ptr = src_k_layers.defined() ? src_k_layers.data_ptr() : nullptr; const uintptr_t* dst_k_tbl_ptr = dst_k_layers.defined() ? dst_k_layers.data_ptr() : nullptr; const uintptr_t* src_v_tbl_ptr = IsMLA || !src_v_layers.defined() ? nullptr : src_v_layers.data_ptr(); const uintptr_t* dst_v_tbl_ptr = IsMLA || !dst_v_layers.defined() ? nullptr : dst_v_layers.data_ptr(); cudaStream_t torch_current_stream = at::cuda::getCurrentCUDAStream(); transfer_kernel_impl<<>>( src_k_ptr, dst_k_ptr, src_v_ptr, dst_v_ptr, src_indices.data_ptr(), dst_indices.data_ptr(), start_layer_id, num_layers_to_process, num_items, items_per_warp, item_size, src_layout_dim, dst_layout_dim, src_k_tbl_ptr, dst_k_tbl_ptr, src_v_tbl_ptr, dst_v_tbl_ptr); C10_CUDA_KERNEL_LAUNCH_CHECK(); } void transfer_kv_per_layer( const at::Tensor src_k, at::Tensor dst_k, const at::Tensor src_v, at::Tensor dst_v, const at::Tensor src_indices, const at::Tensor dst_indices, int64_t item_size, int64_t block_quota, int64_t num_warps_per_block) { at::Tensor empty; transfer_kv_launcher, get_global_offset_lf, false>( src_k, dst_k, src_v, dst_v, src_indices, dst_indices, 0, 1, item_size, 0, 0, empty, empty, empty, empty, block_quota, num_warps_per_block); } void transfer_kv_per_layer_pf_lf( const at::Tensor src_k, at::Tensor dst_k, const at::Tensor src_v, at::Tensor dst_v, const at::Tensor src_indices, const at::Tensor dst_indices, int64_t item_size, int64_t src_layout_dim, int64_t block_quota, int64_t num_warps_per_block) { at::Tensor empty; transfer_kv_launcher, get_global_offset_lf, false>( src_k, dst_k, src_v, dst_v, src_indices, dst_indices, 0, 1, item_size, src_layout_dim, 0, empty, empty, empty, empty, block_quota, num_warps_per_block); } void transfer_kv_all_layer( const at::Tensor src_k_layers, const at::Tensor dst_k_layers, const at::Tensor src_v_layers, const at::Tensor dst_v_layers, const at::Tensor src_indices, const at::Tensor dst_indices, int64_t item_size, int64_t num_layers, int64_t block_quota, int64_t num_warps_per_block) { TORCH_CHECK(num_layers == src_k_layers.size(0), "Number of layers in source k tensor does not match num_layers"); at::Tensor empty; transfer_kv_launcher, get_global_offset_lf_tbl, false>( empty, empty, empty, empty, src_indices, dst_indices, 0, num_layers, item_size, 0, 0, src_k_layers, dst_k_layers, src_v_layers, dst_v_layers, block_quota, num_warps_per_block); } void transfer_kv_all_layer_lf_pf( const at::Tensor src_k_layers, at::Tensor dst_k, const at::Tensor src_v_layers, at::Tensor dst_v, const at::Tensor src_indices, const at::Tensor dst_indices, int64_t item_size, int64_t dst_layout_dim, int64_t num_layers, int64_t block_quota, int64_t num_warps_per_block) { TORCH_CHECK(num_layers == src_k_layers.size(0), "Number of layers in source k tensor does not match num_layers"); at::Tensor empty; transfer_kv_launcher, get_global_offset_pf, false>( empty, dst_k, empty, dst_v, src_indices, dst_indices, 0, num_layers, item_size, 0, dst_layout_dim, src_k_layers, empty, src_v_layers, empty, block_quota, num_warps_per_block); } void transfer_kv_per_layer_mla( const at::Tensor src, at::Tensor dst, const at::Tensor src_indices, const at::Tensor dst_indices, int64_t item_size, int64_t block_quota, int64_t num_warps_per_block) { at::Tensor empty; transfer_kv_launcher, get_global_offset_lf, true>( src, dst, empty, empty, src_indices, dst_indices, 0, 1, item_size, 0, 0, empty, empty, empty, empty, block_quota, num_warps_per_block); } void transfer_kv_per_layer_mla_pf_lf( const at::Tensor src, at::Tensor dst, const at::Tensor src_indices, const at::Tensor dst_indices, int64_t item_size, int64_t src_layout_dim, int64_t block_quota, int64_t num_warps_per_block) { at::Tensor empty; transfer_kv_launcher, get_global_offset_lf, true>( src, dst, empty, empty, src_indices, dst_indices, 0, 1, item_size, src_layout_dim, 0, empty, empty, empty, empty, block_quota, num_warps_per_block); } void transfer_kv_all_layer_mla( const at::Tensor src_layers, const at::Tensor dst_layers, const at::Tensor src_indices, const at::Tensor dst_indices, int64_t item_size, int64_t num_layers, int64_t block_quota, int64_t num_warps_per_block) { TORCH_CHECK(num_layers == src_layers.size(0), "Number of layers in source tensor does not match num_layers"); at::Tensor empty; transfer_kv_launcher, get_global_offset_lf_tbl, true>( empty, empty, empty, empty, src_indices, dst_indices, 0, num_layers, item_size, 0, 0, src_layers, dst_layers, empty, empty, block_quota, num_warps_per_block); } void transfer_kv_all_layer_mla_lf_pf( const at::Tensor src_layers, at::Tensor dst, const at::Tensor src_indices, const at::Tensor dst_indices, int64_t item_size, int64_t dst_layout_dim, int64_t num_layers, int64_t block_quota, int64_t num_warps_per_block) { TORCH_CHECK(num_layers == src_layers.size(0), "Number of layers in source tensor does not match num_layers"); at::Tensor empty; transfer_kv_launcher, get_global_offset_pf, true>( empty, dst, empty, empty, src_indices, dst_indices, 0, num_layers, item_size, 0, dst_layout_dim, src_layers, empty, empty, empty, block_quota, num_warps_per_block); } inline void transfer_page_direct( const at::Tensor& src_buffer, at::Tensor& dst_buffer, int64_t src_page_index, int64_t dst_page_index, int64_t page_size) { dst_buffer.slice(0, dst_page_index, dst_page_index + page_size) .copy_( src_buffer.slice(0, src_page_index, src_page_index + page_size), /* non_blocking= */ true); } void transfer_kv_direct( const std::vector& src_layers, std::vector dst_layers, const at::Tensor src_indices, const at::Tensor dst_indices, int64_t page_size) { TORCH_CHECK( src_layers.size() == dst_layers.size(), "Source and destination layers must have the same number of layers"); TORCH_CHECK(src_indices.numel() == dst_indices.numel(), "Source and destination indices must have the same length"); TORCH_CHECK(page_size > 0, "Page size must be positive"); TORCH_CHECK(src_indices.numel() % page_size == 0, "Source indices size must be divisible by page size"); auto src_indices_cpu = src_indices.cpu(); auto dst_indices_cpu = dst_indices.cpu(); const int64_t num_pages = src_indices_cpu.size(0) / page_size; const int64_t num_layers = src_layers.size(); for (int64_t i = 0; i < num_pages; ++i) { auto src_index = src_indices_cpu[i * page_size].item(); auto dst_index = dst_indices_cpu[i * page_size].item(); for (int64_t j = 0; j < num_layers; ++j) { transfer_page_direct(src_layers[j], dst_layers[j], src_index, dst_index, page_size); } } }