test_openai_server.py 24.5 KB
Newer Older
1
2
3
4
5
"""
python3 -m unittest test_openai_server.TestOpenAIServer.test_batch
python3 -m unittest test_openai_server.TestOpenAIServer.test_completion

"""
Chayenne's avatar
Chayenne committed
6

7
import json
8
import re
9
import time
10
import unittest
11
12

import openai
13

yichuan~'s avatar
yichuan~ committed
14
from sglang.srt.hf_transformers_utils import get_tokenizer
15
from sglang.srt.utils import kill_process_tree
16
from sglang.test.test_utils import (
17
    DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST,
Lianmin Zheng's avatar
Lianmin Zheng committed
18
    DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
19
20
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
21
22
    popen_launch_server,
)
23
24
25
26
27


class TestOpenAIServer(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
Lianmin Zheng's avatar
Lianmin Zheng committed
28
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
29
        cls.base_url = DEFAULT_URL_FOR_TEST
30
31
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
32
33
34
35
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
36
        )
37
        cls.base_url += "/v1"
Lianmin Zheng's avatar
Lianmin Zheng committed
38
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)
39
40
41

    @classmethod
    def tearDownClass(cls):
42
        kill_process_tree(cls.process.pid)
43

yichuan~'s avatar
yichuan~ committed
44
45
46
    def run_completion(
        self, echo, logprobs, use_list_input, parallel_sample_num, token_input
    ):
47
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
48
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
49
50
51
52
53
54
        if token_input:
            prompt_input = self.tokenizer.encode(prompt)
            num_prompt_tokens = len(prompt_input)
        else:
            prompt_input = prompt
            num_prompt_tokens = len(self.tokenizer.encode(prompt))
55
56

        if use_list_input:
yichuan~'s avatar
yichuan~ committed
57
            prompt_arg = [prompt_input, prompt_input]
58
            num_choices = len(prompt_arg)
yichuan~'s avatar
yichuan~ committed
59
            num_prompt_tokens *= 2
60
        else:
yichuan~'s avatar
yichuan~ committed
61
            prompt_arg = prompt_input
62
63
            num_choices = 1

64
65
        response = client.completions.create(
            model=self.model,
66
            prompt=prompt_arg,
yichuan~'s avatar
yichuan~ committed
67
            temperature=0,
68
69
70
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
71
            n=parallel_sample_num,
72
        )
73

yichuan~'s avatar
yichuan~ committed
74
        assert len(response.choices) == num_choices * parallel_sample_num
75

Cody Yu's avatar
Cody Yu committed
76
        if echo:
77
            text = response.choices[0].text
78
            assert text.startswith(prompt)
yichuan~'s avatar
yichuan~ committed
79

Cody Yu's avatar
Cody Yu committed
80
        if logprobs:
81
82
83
            assert response.choices[0].logprobs
            assert isinstance(response.choices[0].logprobs.tokens[0], str)
            assert isinstance(response.choices[0].logprobs.top_logprobs[1], dict)
84
            ret_num_top_logprobs = len(response.choices[0].logprobs.top_logprobs[1])
85

86
            # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some output id maps to the same output token and duplicate in the map
87
            # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
yichuan~'s avatar
yichuan~ committed
88
            assert ret_num_top_logprobs > 0
89

90
91
92
            # when echo=True and request.logprobs>0, logprob_start_len is 0, so the first token's logprob would be None.
            if not echo:
                assert response.choices[0].logprobs.token_logprobs[0]
yichuan~'s avatar
yichuan~ committed
93

94
95
        assert response.id
        assert response.created
yichuan~'s avatar
yichuan~ committed
96
97
98
        assert (
            response.usage.prompt_tokens == num_prompt_tokens
        ), f"{response.usage.prompt_tokens} vs {num_prompt_tokens}"
99
100
101
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

102
103
104
    def run_completion_stream(
        self, echo, logprobs, use_list_input, parallel_sample_num, token_input
    ):
105
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
106
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
107
        if token_input:
108
109
            prompt_input = self.tokenizer.encode(prompt)
            num_prompt_tokens = len(prompt_input)
yichuan~'s avatar
yichuan~ committed
110
        else:
111
112
113
114
115
116
117
118
119
120
121
            prompt_input = prompt
            num_prompt_tokens = len(self.tokenizer.encode(prompt))

        if use_list_input:
            prompt_arg = [prompt_input, prompt_input]
            num_choices = len(prompt_arg)
            num_prompt_tokens *= 2
        else:
            prompt_arg = prompt_input
            num_choices = 1

122
123
        generator = client.completions.create(
            model=self.model,
yichuan~'s avatar
yichuan~ committed
124
125
            prompt=prompt_arg,
            temperature=0,
126
127
128
129
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
            stream=True,
130
            stream_options={"include_usage": True},
131
            n=parallel_sample_num,
132
133
        )

134
        is_firsts = {}
135
        for response in generator:
136
137
138
139
140
141
            usage = response.usage
            if usage is not None:
                assert usage.prompt_tokens > 0
                assert usage.completion_tokens > 0
                assert usage.total_tokens > 0
                continue
142
143
144
145

            index = response.choices[0].index
            is_first = is_firsts.get(index, True)

146
147
148
            if logprobs:
                assert response.choices[0].logprobs
                assert isinstance(response.choices[0].logprobs.tokens[0], str)
149
                if not (is_first and echo):
150
151
152
153
154
155
                    assert isinstance(
                        response.choices[0].logprobs.top_logprobs[0], dict
                    )
                    ret_num_top_logprobs = len(
                        response.choices[0].logprobs.top_logprobs[0]
                    )
156
                    # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some output id maps to the same output token and duplicate in the map
157
                    # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
yichuan~'s avatar
yichuan~ committed
158
                    assert ret_num_top_logprobs > 0
159

160
            if is_first:
161
                if echo:
yichuan~'s avatar
yichuan~ committed
162
163
                    assert response.choices[0].text.startswith(
                        prompt
164
165
                    ), f"{response.choices[0].text} and all args {echo} {logprobs} {token_input} {is_first}"
                is_firsts[index] = False
166
167
168
            assert response.id
            assert response.created

169
170
171
172
173
        for index in [i for i in range(parallel_sample_num * num_choices)]:
            assert not is_firsts.get(
                index, True
            ), f"index {index} is not found in the response"

yichuan~'s avatar
yichuan~ committed
174
    def run_chat_completion(self, logprobs, parallel_sample_num):
175
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
176
177
178
179
        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
Ying Sheng's avatar
Ying Sheng committed
180
181
182
183
                {
                    "role": "user",
                    "content": "What is the capital of France? Answer in a few words.",
                },
184
185
186
187
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
188
            n=parallel_sample_num,
189
        )
Ying Sheng's avatar
Ying Sheng committed
190

191
192
193
194
195
196
197
198
199
200
201
        if logprobs:
            assert isinstance(
                response.choices[0].logprobs.content[0].top_logprobs[0].token, str
            )

            ret_num_top_logprobs = len(
                response.choices[0].logprobs.content[0].top_logprobs
            )
            assert (
                ret_num_top_logprobs == logprobs
            ), f"{ret_num_top_logprobs} vs {logprobs}"
Ying Sheng's avatar
Ying Sheng committed
202

yichuan~'s avatar
yichuan~ committed
203
        assert len(response.choices) == parallel_sample_num
204
205
206
207
208
209
210
211
        assert response.choices[0].message.role == "assistant"
        assert isinstance(response.choices[0].message.content, str)
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

212
    def run_chat_completion_stream(self, logprobs, parallel_sample_num=1):
213
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
214
215
216
217
218
219
220
221
222
223
        generator = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "What is the capital of France?"},
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
            stream=True,
224
            stream_options={"include_usage": True},
225
            n=parallel_sample_num,
226
227
        )

228
        is_firsts = {}
229
        for response in generator:
230
231
232
233
234
235
236
            usage = response.usage
            if usage is not None:
                assert usage.prompt_tokens > 0
                assert usage.completion_tokens > 0
                assert usage.total_tokens > 0
                continue

237
            index = response.choices[0].index
238
            data = response.choices[0].delta
239

240
241
242
            if is_firsts.get(index, True):
                assert data.role == "assistant"
                is_firsts[index] = False
243
244
245
                continue

            if logprobs:
yichuan~'s avatar
yichuan~ committed
246
247
248
249
250
251
252
253
254
255
256
257
258
                assert response.choices[0].logprobs
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs[0].token, str
                )
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs, list
                )
                ret_num_top_logprobs = len(
                    response.choices[0].logprobs.content[0].top_logprobs
                )
                assert (
                    ret_num_top_logprobs == logprobs
                ), f"{ret_num_top_logprobs} vs {logprobs}"
259
260
261
262
263

            assert isinstance(data.content, str)
            assert response.id
            assert response.created

264
265
266
267
268
        for index in [i for i in range(parallel_sample_num)]:
            assert not is_firsts.get(
                index, True
            ), f"index {index} is not found in the response"

269
    def _create_batch(self, mode, client):
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        if mode == "completion":
            input_file_path = "complete_input.jsonl"
            # write content to input file
            content = [
                {
                    "custom_id": "request-1",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 3 names of famous soccer player: ",
                        "max_tokens": 20,
                    },
                },
                {
                    "custom_id": "request-2",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 6 names of famous basketball player:  ",
                        "max_tokens": 40,
                    },
                },
                {
                    "custom_id": "request-3",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 6 names of famous tenniss player:  ",
                        "max_tokens": 40,
                    },
                },
            ]

        else:
            input_file_path = "chat_input.jsonl"
            content = [
                {
                    "custom_id": "request-1",
                    "method": "POST",
                    "url": "/v1/chat/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-0125",
                        "messages": [
                            {
                                "role": "system",
                                "content": "You are a helpful assistant.",
                            },
                            {
                                "role": "user",
                                "content": "Hello! List 3 NBA players and tell a story",
                            },
                        ],
                        "max_tokens": 30,
                    },
                },
                {
                    "custom_id": "request-2",
                    "method": "POST",
                    "url": "/v1/chat/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-0125",
                        "messages": [
                            {"role": "system", "content": "You are an assistant. "},
                            {
                                "role": "user",
                                "content": "Hello! List three capital and tell a story",
                            },
                        ],
                        "max_tokens": 50,
                    },
                },
            ]
345

346
347
348
        with open(input_file_path, "w") as file:
            for line in content:
                file.write(json.dumps(line) + "\n")
349

350
351
352
353
354
355
356
357
358
359
360
361
        with open(input_file_path, "rb") as file:
            uploaded_file = client.files.create(file=file, purpose="batch")
        if mode == "completion":
            endpoint = "/v1/completions"
        elif mode == "chat":
            endpoint = "/v1/chat/completions"
        completion_window = "24h"
        batch_job = client.batches.create(
            input_file_id=uploaded_file.id,
            endpoint=endpoint,
            completion_window=completion_window,
        )
362

363
        return batch_job, content, uploaded_file
364
365
366

    def run_batch(self, mode):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
367
        batch_job, content, uploaded_file = self._create_batch(mode=mode, client=client)
368

369
370
371
372
373
374
        while batch_job.status not in ["completed", "failed", "cancelled"]:
            time.sleep(3)
            print(
                f"Batch job status: {batch_job.status}...trying again in 3 seconds..."
            )
            batch_job = client.batches.retrieve(batch_job.id)
375
376
377
        assert (
            batch_job.status == "completed"
        ), f"Batch job status is not completed: {batch_job.status}"
378
379
380
381
382
383
        assert batch_job.request_counts.completed == len(content)
        assert batch_job.request_counts.failed == 0
        assert batch_job.request_counts.total == len(content)

        result_file_id = batch_job.output_file_id
        file_response = client.files.content(result_file_id)
yichuan~'s avatar
yichuan~ committed
384
385
386
387
388
389
        result_content = file_response.read().decode("utf-8")  # Decode bytes to string
        results = [
            json.loads(line)
            for line in result_content.split("\n")
            if line.strip() != ""
        ]
390
        assert len(results) == len(content)
391
392
393
        for delete_fid in [uploaded_file.id, result_file_id]:
            del_pesponse = client.files.delete(delete_fid)
            assert del_pesponse.deleted
394

395
396
    def run_cancel_batch(self, mode):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
397
        batch_job, _, uploaded_file = self._create_batch(mode=mode, client=client)
398
399
400
401
402
403
404
405
406
407
408
409
410
411

        assert batch_job.status not in ["cancelling", "cancelled"]

        batch_job = client.batches.cancel(batch_id=batch_job.id)
        assert batch_job.status == "cancelling"

        while batch_job.status not in ["failed", "cancelled"]:
            batch_job = client.batches.retrieve(batch_job.id)
            print(
                f"Batch job status: {batch_job.status}...trying again in 3 seconds..."
            )
            time.sleep(3)

        assert batch_job.status == "cancelled"
412
413
        del_response = client.files.delete(uploaded_file.id)
        assert del_response.deleted
414

415
416
417
    def test_completion(self):
        for echo in [False, True]:
            for logprobs in [None, 5]:
418
                for use_list_input in [True, False]:
yichuan~'s avatar
yichuan~ committed
419
420
421
422
423
424
425
426
427
                    for parallel_sample_num in [1, 2]:
                        for token_input in [False, True]:
                            self.run_completion(
                                echo,
                                logprobs,
                                use_list_input,
                                parallel_sample_num,
                                token_input,
                            )
428
429

    def test_completion_stream(self):
yichuan~'s avatar
yichuan~ committed
430
        # parallel sampling adn list input are not supported in streaming mode
431
432
        for echo in [False, True]:
            for logprobs in [None, 5]:
433
434
435
436
437
438
439
440
441
442
                for use_list_input in [True, False]:
                    for parallel_sample_num in [1, 2]:
                        for token_input in [False, True]:
                            self.run_completion_stream(
                                echo,
                                logprobs,
                                use_list_input,
                                parallel_sample_num,
                                token_input,
                            )
443

444
445
    def test_chat_completion(self):
        for logprobs in [None, 5]:
yichuan~'s avatar
yichuan~ committed
446
447
            for parallel_sample_num in [1, 2]:
                self.run_chat_completion(logprobs, parallel_sample_num)
448
449
450

    def test_chat_completion_stream(self):
        for logprobs in [None, 5]:
451
452
            for parallel_sample_num in [1, 2]:
                self.run_chat_completion_stream(logprobs, parallel_sample_num)
453

454
455
456
457
    def test_batch(self):
        for mode in ["completion", "chat"]:
            self.run_batch(mode)

458
    def test_cancel_batch(self):
459
460
461
        for mode in ["completion", "chat"]:
            self.run_cancel_batch(mode)

462
    def test_regex(self):
463
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

        regex = (
            r"""\{\n"""
            + r"""   "name": "[\w]+",\n"""
            + r"""   "population": [\d]+\n"""
            + r"""\}"""
        )

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "Introduce the capital of France."},
            ],
            temperature=0,
            max_tokens=128,
            extra_body={"regex": regex},
        )
        text = response.choices[0].message.content

        try:
            js_obj = json.loads(text)
        except (TypeError, json.decoder.JSONDecodeError):
            print("JSONDecodeError", text)
            raise
        assert isinstance(js_obj["name"], str)
        assert isinstance(js_obj["population"], int)

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
    def test_penalty(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "Introduce the capital of France."},
            ],
            temperature=0,
            max_tokens=32,
            frequency_penalty=1.0,
        )
        text = response.choices[0].message.content
        assert isinstance(text, str)

508
509
510
511
    def test_response_prefill(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
512
            model="meta-llama/Llama-3.1-8B-Instruct",
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {
                    "role": "user",
                    "content": """
Extract the name, size, price, and color from this product description as a JSON object:

<description>
The SmartHome Mini is a compact smart home assistant available in black or white for only $49.99. At just 5 inches wide, it lets you control lights, thermostats, and other connected devices via voice or app—no matter where you place it in your home. This affordable little hub brings convenient hands-free control to your smart devices.
</description>
""",
                },
                {
                    "role": "assistant",
                    "content": "{\n",
                },
            ],
            temperature=0,
        )

        assert (
            response.choices[0]
            .message.content.strip()
            .startswith('"name": "SmartHome Mini",')
        )

539

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
# -------------------------------------------------------------------------
#    EBNF Test Class: TestOpenAIServerEBNF
#    Launches the server with xgrammar, has only EBNF tests
# -------------------------------------------------------------------------
class TestOpenAIServerEBNF(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        # passing xgrammar specifically
        other_args = ["--grammar-backend", "xgrammar"]
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=other_args,
        )
        cls.base_url += "/v1"
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_ebnf(self):
        """
        Ensure we can pass `ebnf` to the local openai server
        and that it enforces the grammar.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        ebnf_grammar = r"""
        root ::= "Hello" | "Hi" | "Hey"
        """
        pattern = re.compile(r"^(Hello|Hi|Hey)[.!?]*\s*$")

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful EBNF test bot."},
                {"role": "user", "content": "Say a greeting (Hello, Hi, or Hey)."},
            ],
            temperature=0,
            max_tokens=32,
            extra_body={"ebnf": ebnf_grammar},
        )
        text = response.choices[0].message.content.strip()
        print("EBNF test output:", repr(text))
        self.assertTrue(len(text) > 0, "Got empty text from EBNF generation")
        self.assertRegex(text, pattern, f"Text '{text}' doesn't match EBNF choices")

    def test_ebnf_strict_json(self):
        """
        A stricter EBNF that produces exactly {"name":"Alice"} format
        with no trailing punctuation or extra fields.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        ebnf_grammar = r"""
        root    ::= "{" pair "}"
        pair    ::= "\"name\"" ":" string
        string  ::= "\"" [A-Za-z]+ "\""
        """
        pattern = re.compile(r'^\{"name":"[A-Za-z]+"\}$')

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "EBNF mini-JSON generator."},
                {
                    "role": "user",
                    "content": "Generate single key JSON with only letters.",
                },
            ],
            temperature=0,
            max_tokens=64,
            extra_body={"ebnf": ebnf_grammar},
        )
        text = response.choices[0].message.content.strip()
        print("EBNF strict JSON test output:", repr(text))
        self.assertTrue(len(text) > 0, "Got empty text from EBNF strict JSON test")
        self.assertRegex(
            text, pattern, f"Text '{text}' not matching the EBNF strict JSON shape"
        )


627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
class TestOpenAIEmbedding(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        # Configure embedding-specific args
        other_args = ["--is-embedding", "--enable-metrics"]
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=other_args,
        )
        cls.base_url += "/v1"

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_embedding_single(self):
        """Test single embedding request"""
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        response = client.embeddings.create(model=self.model, input="Hello world")
        self.assertEqual(len(response.data), 1)
        self.assertTrue(len(response.data[0].embedding) > 0)

    def test_embedding_batch(self):
        """Test batch embedding request"""
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        response = client.embeddings.create(
            model=self.model, input=["Hello world", "Test text"]
        )
        self.assertEqual(len(response.data), 2)
        self.assertTrue(len(response.data[0].embedding) > 0)
        self.assertTrue(len(response.data[1].embedding) > 0)


667
if __name__ == "__main__":
Lianmin Zheng's avatar
Lianmin Zheng committed
668
    unittest.main()