moe_align_kernel.cu 10.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

16
17
18
19
20
21
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>

#include <THC/THCAtomics.cuh>

22
#include "utils.h"
23

24
#define WARP_SIZE 32
25

26
#define VEC_SIZE 4
27
using Vec = int4;
28

29
30
31
32
33
34
#ifndef __CUDA_ARCH__  // HIP
#define SHFL_UP(mask, val, delta) __shfl_up((val), (delta))
#else  // CUDA
#define SHFL_UP(mask, val, delta) __shfl_up_sync((mask), (val), (delta))
#endif

35
template <typename scalar_t>
36
37
38
39
40
__global__ void count_and_sort_expert_tokens_kernel(
    const scalar_t* __restrict__ topk_ids,
    int32_t* __restrict__ sorted_token_ids,
    int32_t* __restrict__ cumsum_buffer,
    size_t numel) {
41
42
  const size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
  const size_t stride = blockDim.x * gridDim.x;
43

44
45
46
47
  for (size_t i = tid; i < numel; i += stride) {
    int32_t expert_id = topk_ids[i];
    int32_t rank_post_pad = atomicAdd(&cumsum_buffer[expert_id], 1);
    sorted_token_ids[rank_post_pad] = i;
48
49
  }
}
50

51
52
53
54
55
56
57
58
59
60
__device__ __forceinline__ int warp_exclusive_scan(int v, unsigned mask = 0xffffffffu) {
  int original = v;
#pragma unroll
  for (int offset = 1; offset < WARP_SIZE; offset <<= 1) {
    int n = SHFL_UP(mask, v, offset);
    if ((threadIdx.x & (WARP_SIZE - 1)) >= offset) v += n;
  }
  return v - original;
}

61
template <typename scalar_t>
62
63
64
65
66
67
68
69
__global__ void moe_align_block_size_kernel(
    const scalar_t* __restrict__ topk_ids,
    int32_t* __restrict__ sorted_token_ids,
    int32_t* __restrict__ expert_ids,
    int32_t* __restrict__ total_tokens_post_pad,
    int32_t num_experts,
    int32_t block_size,
    size_t numel,
70
    int32_t* __restrict__ cumsum,
71
72
73
74
75
76
    bool pad_sorted_token_ids,
    const int32_t scan_size) {
  extern __shared__ int32_t smem[];
  int32_t* shared_counts = smem;                  // [num_experts]
  int32_t* prefix = shared_counts + num_experts;  // [num_experts + 1]
  int32_t* scan_buf = prefix + num_experts + 1;   // [scan_size]
77
  int32_t* warp_sums = scan_buf + scan_size;      // [<= 32]
78
  __shared__ int32_t s_total_tokens_post_pad;
79

80
81
  const size_t tid = threadIdx.x;
  const size_t stride = blockDim.x;
82

83
84
  if (tid < num_experts) {
    shared_counts[tid] = 0;
85
  }
86

87
  __syncthreads();
88

89
  for (size_t i = tid; i < numel; i += stride) {
90
    int expert_id = topk_ids[i];
91
    atomicAdd(&shared_counts[expert_id], 1);
92
93
94
95
  }

  __syncthreads();

96
  // Calculate padded_cnt, write scan_buf, directly prefix sum
97
98
99
100
101
102
  int32_t padded_count = 0;
  if (tid < num_experts) {
    int32_t count = shared_counts[tid];
    padded_count = (count + block_size - 1) / block_size * block_size;
    scan_buf[tid] = padded_count;
  }
103

104
105
106
107
108
109
  // Intra warp prefix sum
  const int warp_id = tid / WARP_SIZE;
  const int lane_id = tid & (WARP_SIZE - 1);
  const int num_warps_for_scan = (scan_size + WARP_SIZE - 1) / WARP_SIZE;
  const int warp_sum = warp_exclusive_scan(padded_count) + padded_count;
  if (lane_id == WARP_SIZE - 1) warp_sums[warp_id] = warp_sum;
110
111
  __syncthreads();

112
113
114
115
116
  // warp0 accumulate all the block's prefix sum
  if (tid < WARP_SIZE) {
    int val = (tid < num_warps_for_scan) ? warp_sums[tid] : 0;
    int incl = warp_exclusive_scan(val) + val;
    warp_sums[tid] = incl;
117
  }
118
  __syncthreads();
119

120
  // Every thread obtains the whole block's sum
121
  if (tid == 0) {
122
123
124
    prefix[num_experts] = warp_sums[num_warps_for_scan - 1];
    s_total_tokens_post_pad = prefix[num_experts];
    *total_tokens_post_pad = s_total_tokens_post_pad;
125
126
  }
  __syncthreads();
127

128
129
130
  // Fill 0 to scan_buf extended area (tid >= num_expert)
  if (tid >= num_experts && tid < scan_size) scan_buf[tid] = 0;
  __syncthreads();
131

132
133
134
135
136
  // Perform 2 level exclusive-prefix-sum to scan_buf
  int v = (tid < scan_size) ? scan_buf[tid] : 0;
  int pre = warp_exclusive_scan(v);
  if (lane_id == WARP_SIZE - 1) warp_sums[warp_id] = pre + v;
  __syncthreads();
137

138
139
140
  if (warp_id == 0) {
    int val = (lane_id < num_warps_for_scan) ? warp_sums[lane_id] : 0;
    warp_sums[lane_id] = warp_exclusive_scan(val);
141
  }
142
  __syncthreads();
143

144
145
  int offset = warp_sums[warp_id];
  if (tid < scan_size) scan_buf[tid] = pre + offset;
146
147
  __syncthreads();

148
149
  // Write prefix[0..num_experts - 1] and cumsum
  if (tid < num_experts) prefix[tid] = scan_buf[tid];
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
  if (tid <= num_experts) {
    cumsum[tid] = prefix[tid];
  }

  // fill expert_ids
  const int32_t num_blocks = s_total_tokens_post_pad / block_size;
  for (int32_t i = tid; i < num_blocks; i += stride) {
    int32_t block_start = i * block_size;
    int left = 0, right = num_experts;
    while (left < right) {
      int mid = (left + right) >> 1;
      if (prefix[mid] <= block_start) {
        left = mid + 1;
      } else {
        right = mid;
      }
    }
    expert_ids[i] = left - 1;
  }

  if (pad_sorted_token_ids) {
    Vec fill_vec;
    fill_vec.x = fill_vec.y = fill_vec.z = fill_vec.w = numel;
    int32_t total_vecs = (s_total_tokens_post_pad + VEC_SIZE - 1) / VEC_SIZE;
    Vec* out_ptr = reinterpret_cast<Vec*>(sorted_token_ids);
    for (int32_t i = tid; i < total_vecs; i += stride) {
      out_ptr[i] = fill_vec;
177
178
    }
  }
179
180
}

181
182
183
184
185
186
187
188
template <typename scalar_t>
__global__ void moe_align_block_size_small_batch_expert_kernel(
    const scalar_t* __restrict__ topk_ids,
    int32_t* __restrict__ sorted_token_ids,
    int32_t* __restrict__ expert_ids,
    int32_t* __restrict__ total_tokens_post_pad,
    int32_t num_experts,
    int32_t block_size,
189
190
    size_t numel,
    bool pad_sorted_token_ids) {
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
  const size_t tid = threadIdx.x;
  const size_t stride = blockDim.x;

  extern __shared__ int32_t shared_mem[];
  int32_t* cumsum = shared_mem;
  int32_t* tokens_cnts = (int32_t*)(shared_mem + num_experts + 1);

  for (int i = 0; i < num_experts; ++i) {
    tokens_cnts[(threadIdx.x + 1) * num_experts + i] = 0;
  }

  for (size_t i = tid; i < numel; i += stride) {
    ++tokens_cnts[(threadIdx.x + 1) * num_experts + topk_ids[i]];
  }

  __syncthreads();

  if (threadIdx.x < num_experts) {
    tokens_cnts[threadIdx.x] = 0;
    for (int i = 1; i <= blockDim.x; ++i) {
      tokens_cnts[i * num_experts + threadIdx.x] += tokens_cnts[(i - 1) * num_experts + threadIdx.x];
    }
  }

  __syncthreads();

  if (threadIdx.x == 0) {
    cumsum[0] = 0;
    for (int i = 1; i <= num_experts; ++i) {
      cumsum[i] = cumsum[i - 1] + CEILDIV(tokens_cnts[blockDim.x * num_experts + i - 1], block_size) * block_size;
    }
    *total_tokens_post_pad = static_cast<int32_t>(cumsum[num_experts]);
  }

  __syncthreads();

  if (threadIdx.x < num_experts) {
    for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1]; i += block_size) {
      expert_ids[i / block_size] = threadIdx.x;
    }
  }

233
234
  if (pad_sorted_token_ids) {
    Vec fill_vec;
235
236
    fill_vec.x = fill_vec.y = fill_vec.z = fill_vec.w = numel;
    int32_t total_vecs = (*total_tokens_post_pad + VEC_SIZE - 1) / VEC_SIZE;
237
    Vec* out_ptr = reinterpret_cast<Vec*>(sorted_token_ids);
238
239
    for (int32_t i = tid; i < total_vecs; i += stride) {
      out_ptr[i] = fill_vec;
240
241
242
243
244
    }
  }

  __syncthreads();

245
246
247
248
249
250
251
252
  for (size_t i = tid; i < numel; i += stride) {
    int32_t expert_id = topk_ids[i];
    int32_t rank_post_pad = tokens_cnts[threadIdx.x * num_experts + expert_id] + cumsum[expert_id];
    sorted_token_ids[rank_post_pad] = i;
    ++tokens_cnts[threadIdx.x * num_experts + expert_id];
  }
}

253
254
255
256
257
258
259
260
void moe_align_block_size(
    torch::Tensor topk_ids,
    int64_t num_experts,
    int64_t block_size,
    torch::Tensor sorted_token_ids,
    torch::Tensor experts_ids,
    torch::Tensor num_tokens_post_pad,
    torch::Tensor token_cnts_buffer,
261
262
    torch::Tensor cumsum_buffer,
    bool pad_sorted_token_ids) {
263
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
264

265
  int threads = 1024;
266
267
268

  threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;

269
  DISPATCH_INTEGRAL_TYPES(topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    bool small_batch_expert_mode = (topk_ids.numel() < 1024) && (num_experts <= 64);

    if (small_batch_expert_mode) {
      const int32_t threads = max((int32_t)num_experts, WARP_SIZE);
      const int32_t shared_mem_size = ((threads + 1) * num_experts + (num_experts + 1)) * sizeof(int32_t);

      auto small_batch_expert_kernel = moe_align_block_size_small_batch_expert_kernel<scalar_t>;
      small_batch_expert_kernel<<<1, threads, shared_mem_size, stream>>>(
          topk_ids.data_ptr<scalar_t>(),
          sorted_token_ids.data_ptr<int32_t>(),
          experts_ids.data_ptr<int32_t>(),
          num_tokens_post_pad.data_ptr<int32_t>(),
          num_experts,
          block_size,
284
285
          topk_ids.numel(),
          pad_sorted_token_ids);
286
287
288
    } else {
      auto align_kernel = moe_align_block_size_kernel<scalar_t>;

289
      const size_t scan_size = next_pow2(num_experts);
290
      const size_t shared_mem_size = (num_experts + (num_experts + 1) + scan_size + WARP_SIZE) * sizeof(int32_t);
291
292
293
294
295
296
297
298
299

      align_kernel<<<1, threads, shared_mem_size, stream>>>(
          topk_ids.data_ptr<scalar_t>(),
          sorted_token_ids.data_ptr<int32_t>(),
          experts_ids.data_ptr<int32_t>(),
          num_tokens_post_pad.data_ptr<int32_t>(),
          num_experts,
          block_size,
          topk_ids.numel(),
300
          cumsum_buffer.data_ptr<int32_t>(),
301
302
          pad_sorted_token_ids,
          scan_size);
303
304
305
306
307
308
309
310
311
312
313
314
315

      const int block_threads = std::min(256, (int)threads);
      const int num_blocks = (topk_ids.numel() + block_threads - 1) / block_threads;
      const int max_blocks = 65535;
      const int actual_blocks = std::min(num_blocks, max_blocks);

      auto sort_kernel = count_and_sort_expert_tokens_kernel<scalar_t>;
      sort_kernel<<<actual_blocks, block_threads, 0, stream>>>(
          topk_ids.data_ptr<scalar_t>(),
          sorted_token_ids.data_ptr<int32_t>(),
          cumsum_buffer.data_ptr<int32_t>(),
          topk_ids.numel());
    }
316
317
  });
}