"git@developer.sourcefind.cn:change/sglang.git" did not exist on "f1cf6eefbec615bfec1c026f29c0f5bb06f00ba6"
Unverified Commit af1cc8fe authored by Yuan Luo's avatar Yuan Luo Committed by GitHub
Browse files

[kernel] opt moe align block kernel by block/warp scan algorithm (#7884)

parent 49b87774
...@@ -26,6 +26,12 @@ limitations under the License. ...@@ -26,6 +26,12 @@ limitations under the License.
#define VEC_SIZE 4 #define VEC_SIZE 4
using Vec = int4; using Vec = int4;
#ifndef __CUDA_ARCH__ // HIP
#define SHFL_UP(mask, val, delta) __shfl_up((val), (delta))
#else // CUDA
#define SHFL_UP(mask, val, delta) __shfl_up_sync((mask), (val), (delta))
#endif
template <typename scalar_t> template <typename scalar_t>
__global__ void count_and_sort_expert_tokens_kernel( __global__ void count_and_sort_expert_tokens_kernel(
const scalar_t* __restrict__ topk_ids, const scalar_t* __restrict__ topk_ids,
...@@ -42,6 +48,16 @@ __global__ void count_and_sort_expert_tokens_kernel( ...@@ -42,6 +48,16 @@ __global__ void count_and_sort_expert_tokens_kernel(
} }
} }
__device__ __forceinline__ int warp_exclusive_scan(int v, unsigned mask = 0xffffffffu) {
int original = v;
#pragma unroll
for (int offset = 1; offset < WARP_SIZE; offset <<= 1) {
int n = SHFL_UP(mask, v, offset);
if ((threadIdx.x & (WARP_SIZE - 1)) >= offset) v += n;
}
return v - original;
}
template <typename scalar_t> template <typename scalar_t>
__global__ void moe_align_block_size_kernel( __global__ void moe_align_block_size_kernel(
const scalar_t* __restrict__ topk_ids, const scalar_t* __restrict__ topk_ids,
...@@ -58,6 +74,7 @@ __global__ void moe_align_block_size_kernel( ...@@ -58,6 +74,7 @@ __global__ void moe_align_block_size_kernel(
int32_t* shared_counts = smem; // [num_experts] int32_t* shared_counts = smem; // [num_experts]
int32_t* prefix = shared_counts + num_experts; // [num_experts + 1] int32_t* prefix = shared_counts + num_experts; // [num_experts + 1]
int32_t* scan_buf = prefix + num_experts + 1; // [scan_size] int32_t* scan_buf = prefix + num_experts + 1; // [scan_size]
int32_t* warp_sums = scan_buf + scan_size; // [<= 32]
__shared__ int32_t s_total_tokens_post_pad; __shared__ int32_t s_total_tokens_post_pad;
const size_t tid = threadIdx.x; const size_t tid = threadIdx.x;
...@@ -76,6 +93,7 @@ __global__ void moe_align_block_size_kernel( ...@@ -76,6 +93,7 @@ __global__ void moe_align_block_size_kernel(
__syncthreads(); __syncthreads();
// Calculate padded_cnt, write scan_buf, directly prefix sum
int32_t padded_count = 0; int32_t padded_count = 0;
if (tid < num_experts) { if (tid < num_experts) {
int32_t count = shared_counts[tid]; int32_t count = shared_counts[tid];
...@@ -83,58 +101,52 @@ __global__ void moe_align_block_size_kernel( ...@@ -83,58 +101,52 @@ __global__ void moe_align_block_size_kernel(
scan_buf[tid] = padded_count; scan_buf[tid] = padded_count;
} }
if (tid >= num_experts && tid < scan_size) { // Intra warp prefix sum
scan_buf[tid] = 0; const int warp_id = tid / WARP_SIZE;
} const int lane_id = tid & (WARP_SIZE - 1);
const int num_warps_for_scan = (scan_size + WARP_SIZE - 1) / WARP_SIZE;
const int warp_sum = warp_exclusive_scan(padded_count) + padded_count;
if (lane_id == WARP_SIZE - 1) warp_sums[warp_id] = warp_sum;
__syncthreads(); __syncthreads();
// Blelloch scan // warp0 accumulate all the block's prefix sum
int offset = 1; if (tid < WARP_SIZE) {
#pragma unroll int val = (tid < num_warps_for_scan) ? warp_sums[tid] : 0;
for (int d = scan_size >> 1; d > 0; d >>= 1) { int incl = warp_exclusive_scan(val) + val;
if (tid < d) { warp_sums[tid] = incl;
int ai = offset * (2 * tid + 1) - 1;
int bi = offset * (2 * tid + 2) - 1;
scan_buf[bi] += scan_buf[ai];
}
offset <<= 1;
__syncthreads();
} }
__syncthreads();
// down-sweep // Every thread obtains the whole block's sum
if (tid == 0) { if (tid == 0) {
prefix[num_experts] = scan_buf[scan_size - 1]; prefix[num_experts] = warp_sums[num_warps_for_scan - 1];
scan_buf[scan_size - 1] = 0; s_total_tokens_post_pad = prefix[num_experts];
*total_tokens_post_pad = s_total_tokens_post_pad;
} }
__syncthreads(); __syncthreads();
#pragma unroll // Fill 0 to scan_buf extended area (tid >= num_expert)
for (int d = 1; d < scan_size; d <<= 1) { if (tid >= num_experts && tid < scan_size) scan_buf[tid] = 0;
offset >>= 1; __syncthreads();
if (tid < d) {
int ai = offset * (2 * tid + 1) - 1;
int bi = offset * (2 * tid + 2) - 1;
if (bi < scan_size) {
int temp = scan_buf[ai];
scan_buf[ai] = scan_buf[bi];
scan_buf[bi] += temp;
}
}
__syncthreads();
}
if (tid < num_experts) { // Perform 2 level exclusive-prefix-sum to scan_buf
prefix[tid] = scan_buf[tid]; int v = (tid < scan_size) ? scan_buf[tid] : 0;
} int pre = warp_exclusive_scan(v);
if (lane_id == WARP_SIZE - 1) warp_sums[warp_id] = pre + v;
__syncthreads();
if (tid == 0) { if (warp_id == 0) {
s_total_tokens_post_pad = prefix[num_experts]; int val = (lane_id < num_warps_for_scan) ? warp_sums[lane_id] : 0;
*total_tokens_post_pad = s_total_tokens_post_pad; warp_sums[lane_id] = warp_exclusive_scan(val);
} }
__syncthreads();
int offset = warp_sums[warp_id];
if (tid < scan_size) scan_buf[tid] = pre + offset;
__syncthreads(); __syncthreads();
// Write prefix[0..num_experts - 1] and cumsum
if (tid < num_experts) prefix[tid] = scan_buf[tid];
if (tid <= num_experts) { if (tid <= num_experts) {
cumsum[tid] = prefix[tid]; cumsum[tid] = prefix[tid];
} }
...@@ -250,9 +262,6 @@ void moe_align_block_size( ...@@ -250,9 +262,6 @@ void moe_align_block_size(
bool pad_sorted_token_ids) { bool pad_sorted_token_ids) {
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
int64_t padded_num_experts = ((num_experts + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;
int experts_per_warp = WARP_SIZE;
int threads = 1024; int threads = 1024;
threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE; threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;
...@@ -278,7 +287,7 @@ void moe_align_block_size( ...@@ -278,7 +287,7 @@ void moe_align_block_size(
auto align_kernel = moe_align_block_size_kernel<scalar_t>; auto align_kernel = moe_align_block_size_kernel<scalar_t>;
const size_t scan_size = next_pow2(num_experts); const size_t scan_size = next_pow2(num_experts);
const size_t shared_mem_size = (num_experts + (num_experts + 1) + scan_size) * sizeof(int32_t); const size_t shared_mem_size = (num_experts + (num_experts + 1) + scan_size + WARP_SIZE) * sizeof(int32_t);
align_kernel<<<1, threads, shared_mem_size, stream>>>( align_kernel<<<1, threads, shared_mem_size, stream>>>(
topk_ids.data_ptr<scalar_t>(), topk_ids.data_ptr<scalar_t>(),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment