install.md 6.35 KB
Newer Older
1
# Install SGLang
2

3
You can install SGLang using any of the methods below.
4

5
## Method 1: With pip
6
7
```
pip install --upgrade pip
8
pip install sgl-kernel --force-reinstall --no-deps
9
pip install "sglang[all]>=0.4.3" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python
10
11
```

Yineng Zhang's avatar
Yineng Zhang committed
12
Note: SGLang currently uses torch 2.5, so you need to install the flashinfer version for torch 2.5. If you want to install flashinfer separately, please refer to [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html).
Lianmin Zheng's avatar
Lianmin Zheng committed
13

simveit's avatar
simveit committed
14
15
16
17
18
If you experience an error like `OSError: CUDA_HOME environment variable is not set. Please set it to your CUDA install root`, please try either of the following solutions:

- Use `export CUDA_HOME=/usr/local/cuda-<your-cuda-version>` to set the `CUDA_HOME` environment variable.
- Follow the procedure described in [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html) first, then install SGLang as described above.

19
## Method 2: From source
20
```
21
# Use the last release branch
Yineng Zhang's avatar
Yineng Zhang committed
22
git clone -b v0.4.3 https://github.com/sgl-project/sglang.git
23
cd sglang
24

25
pip install --upgrade pip
26
pip install sgl-kernel --force-reinstall --no-deps
27
pip install -e "python[all]" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python
28
```
29

Yineng Zhang's avatar
Yineng Zhang committed
30
31
32
Note: SGLang currently uses torch 2.5, so you need to install the flashinfer version for torch 2.5. If you want to install flashinfer separately, please refer to [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html).

If you want to work on development in SGLang, it is highly recommended that you use docker. Please refer to [setup docker container](https://github.com/sgl-project/sglang/blob/main/docs/developer/development_guide_using_docker.md#setup-docker-container) for guidance. The image used is `lmsysorg/sglang:dev`.
Lianmin Zheng's avatar
Lianmin Zheng committed
33

34
35
36
37
Note: To AMD ROCm system with Instinct/MI GPUs, do following instead:

```
# Use the last release branch
Yineng Zhang's avatar
Yineng Zhang committed
38
git clone -b v0.4.3 https://github.com/sgl-project/sglang.git
39
40
41
cd sglang

pip install --upgrade pip
42
43
44
cd sgl-kernel
python setup_rocm.py install
cd ..
45
46
47
pip install -e "python[all_hip]"
```

48
## Method 3: Using docker
49
50
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](https://github.com/sgl-project/sglang/tree/main/docker).
Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
51
52

```bash
53
docker run --gpus all \
54
    --shm-size 32g \
55
    -p 30000:30000 \
56
    -v ~/.cache/huggingface:/root/.cache/huggingface \
57
58
    --env "HF_TOKEN=<secret>" \
    --ipc=host \
59
    lmsysorg/sglang:latest \
60
    python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
61
62
```

63
64
65
Note: To AMD ROCm system with Instinct/MI GPUs, it is recommended to use `docker/Dockerfile.rocm` to build images, example and usage as below:

```bash
Yineng Zhang's avatar
Yineng Zhang committed
66
docker build --build-arg SGL_BRANCH=v0.4.3 -t v0.4.3-rocm630 -f Dockerfile.rocm .
67
68
69
70
71
72
73
74

alias drun='docker run -it --rm --network=host --device=/dev/kfd --device=/dev/dri --ipc=host \
    --shm-size 16G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
    -v $HOME/dockerx:/dockerx -v /data:/data'

drun -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --env "HF_TOKEN=<secret>" \
Yineng Zhang's avatar
Yineng Zhang committed
75
    v0.4.3-rocm630 \
76
77
78
    python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000

# Till flashinfer backend available, --attention-backend triton --sampling-backend pytorch are set by default
Yineng Zhang's avatar
Yineng Zhang committed
79
drun v0.4.3-rocm630 python3 -m sglang.bench_one_batch --batch-size 32 --input 1024 --output 128 --model amd/Meta-Llama-3.1-8B-Instruct-FP8-KV --tp 8 --quantization fp8
80
81
```

82
## Method 4: Using docker compose
83
84
85

<details>
<summary>More</summary>
86

87
> This method is recommended if you plan to serve it as a service.
Lianmin Zheng's avatar
Lianmin Zheng committed
88
> A better approach is to use the [k8s-sglang-service.yaml](https://github.com/sgl-project/sglang/blob/main/docker/k8s-sglang-service.yaml).
89

Lianmin Zheng's avatar
Lianmin Zheng committed
90
1. Copy the [compose.yml](https://github.com/sgl-project/sglang/blob/main/docker/compose.yaml) to your local machine
91
2. Execute the command `docker compose up -d` in your terminal.
92
</details>
93

94
## Method 5: Run on Kubernetes or Clouds with SkyPilot
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

<details>
<summary>More</summary>

To deploy on Kubernetes or 12+ clouds, you can use [SkyPilot](https://github.com/skypilot-org/skypilot).

1. Install SkyPilot and set up Kubernetes cluster or cloud access: see [SkyPilot's documentation](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html).
2. Deploy on your own infra with a single command and get the HTTP API endpoint:
<details>
<summary>SkyPilot YAML: <code>sglang.yaml</code></summary>

```yaml
# sglang.yaml
envs:
  HF_TOKEN: null

resources:
  image_id: docker:lmsysorg/sglang:latest
  accelerators: A100
  ports: 30000

run: |
  conda deactivate
  python3 -m sglang.launch_server \
119
    --model-path meta-llama/Llama-3.1-8B-Instruct \
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    --host 0.0.0.0 \
    --port 30000
```
</details>

```bash
# Deploy on any cloud or Kubernetes cluster. Use --cloud <cloud> to select a specific cloud provider.
HF_TOKEN=<secret> sky launch -c sglang --env HF_TOKEN sglang.yaml

# Get the HTTP API endpoint
sky status --endpoint 30000 sglang
```
3. To further scale up your deployment with autoscaling and failure recovery, check out the [SkyServe + SGLang guide](https://github.com/skypilot-org/skypilot/tree/master/llm/sglang#serving-llama-2-with-sglang-for-more-traffic-using-skyserve).
</details>

135
## Common Notes
Lianmin Zheng's avatar
Lianmin Zheng committed
136
- [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is the default attention kernel backend. It only supports sm75 and above. If you encounter any FlashInfer-related issues on sm75+ devices (e.g., T4, A10, A100, L4, L40S, H100), please switch to other kernels by adding `--attention-backend triton --sampling-backend pytorch` and open an issue on GitHub.
Lianmin Zheng's avatar
Lianmin Zheng committed
137
- If you only need to use OpenAI models with the frontend language, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Lianmin Zheng's avatar
Lianmin Zheng committed
138
- The language frontend operates independently of the backend runtime. You can install the frontend locally without needing a GPU, while the backend can be set up on a GPU-enabled machine. To install the frontend, run `pip install sglang`, and for the backend, use `pip install sglang[srt]`. This allows you to build SGLang programs locally and execute them by connecting to the remote backend.