test_generation_models.py 5.41 KB
Newer Older
1
2
3
4
5
6
7
8
"""
Usage:

To test a specific model:
1. Add it to ALL_OTHER_MODELS
2. Run `ONLY_RUN=Qwen/Qwen2-1.5B python3 -m unittest test_generation_models.TestGenerationModels.test_others`
"""

9
10
11
12
13
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
14

15
    http://www.apache.org/licenses/LICENSE-2.0
16

17
18
19
20
21
22
23
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

24
import dataclasses
25
import multiprocessing as mp
26
import os
27
import unittest
28
from typing import List
29
30
31
32

import torch

from sglang.test.runners import DEFAULT_PROMPTS, HFRunner, SRTRunner
33
from sglang.test.test_utils import calculate_rouge_l, is_in_ci
34

35

36
37
38
39
40
41
42
@dataclasses.dataclass
class ModelCase:
    model_path: str
    tp_size: int = 1
    prefill_tolerance: float = 5e-2
    decode_tolerance: float = 5e-2
    rouge_l_tolerance: float = 1
43
44


45
# Popular models that run on the CI
46
CI_MODELS = [
47
    ModelCase("meta-llama/Llama-3.1-8B-Instruct"),
48
49
    ModelCase("google/gemma-2-2b"),
]
50

51
# All other models that do not run on the CI
52
53
ALL_OTHER_MODELS = [
    ModelCase("Qwen/Qwen2-1.5B"),
54
    ModelCase("Qwen/Qwen2.5-14B-Instruct"),
55
    ModelCase("HuggingFaceTB/SmolLM-135M-Instruct"),
56
]
57

58
TORCH_DTYPES = [torch.float16]
59
60


61
class TestGenerationModels(unittest.TestCase):
62
63
64
65
    @classmethod
    def setUpClass(cls):
        mp.set_start_method("spawn")

66
    def assert_close_logits_and_output_strs(
67
        self,
68
69
70
        prompts: List[str],
        model_case: ModelCase,
        torch_dtype: torch.dtype,
71
    ) -> None:
72
73
74
75
76
77
78
        model_path = model_case.model_path
        prefill_tolerance, decode_tolerance, rouge_l_tolerance = (
            model_case.prefill_tolerance,
            model_case.decode_tolerance,
            model_case.rouge_l_tolerance,
        )
        max_new_tokens = 32
79

80
        with HFRunner(
81
82
83
            model_path,
            torch_dtype=torch_dtype,
            model_type="generation",
84
        ) as hf_runner:
85
            hf_outputs = hf_runner.forward(prompts, max_new_tokens=max_new_tokens)
86
87
88

        with SRTRunner(
            model_path,
89
            tp_size=model_case.tp_size,
90
            torch_dtype=torch_dtype,
91
            model_type="generation",
92
        ) as srt_runner:
93
            srt_outputs = srt_runner.forward(prompts, max_new_tokens=max_new_tokens)
94
95

        for i in range(len(prompts)):
96
            # Compare input logprobs
97
98
            hf_logprobs = torch.Tensor(hf_outputs.top_input_logprobs[i])
            srt_logprobs = torch.Tensor(srt_outputs.top_input_logprobs[i])
99
100
101
102
103
            input_len = hf_logprobs.shape[0]
            print(
                "prefill logprobs max_diff", torch.max(abs(hf_logprobs - srt_logprobs))
            )
            if input_len <= 100:
104
105
106
107
108
                assert torch.all(abs(hf_logprobs - srt_logprobs) < prefill_tolerance), (
                    f"prefill logprobs are not all close with model_path={model_path} prompts={prompts} "
                    f"prefill_tolerance={prefill_tolerance}."
                    f"{hf_logprobs=}, {srt_logprobs=}"
                )
109

110
            # Compare output logprobs
111
112
            hf_logprobs = torch.Tensor(hf_outputs.top_output_logprobs[i])
            srt_logprobs = torch.Tensor(srt_outputs.top_output_logprobs[i])
113

114
            print(
115
                "decode logprobs max_diff", torch.max(abs(hf_logprobs - srt_logprobs))
116
117
            )
            if input_len <= 100:
118
119
120
121
122
                assert torch.all(abs(hf_logprobs - srt_logprobs) < decode_tolerance), (
                    f"decode logprobs are not all close with model_path={model_path} prompts={prompts} "
                    f"decode_tolerance={decode_tolerance}."
                    f"{hf_logprobs=}, {srt_logprobs=}"
                )
123

124
125
126
        # Compare output strings
        print(f"{hf_outputs.output_strs=}")
        print(f"{srt_outputs.output_strs=}")
127
128
129
        rouge_l_scores = calculate_rouge_l(
            hf_outputs.output_strs, srt_outputs.output_strs
        )
130
        print(f"{rouge_l_scores=}")
131
        assert all(
132
133
134
135
136
            score >= rouge_l_tolerance for score in rouge_l_scores
        ), f"Not all ROUGE-L scores are greater than rouge_l_tolerance={rouge_l_tolerance}"

    def test_ci_models(self):
        for model_case in CI_MODELS:
137
            for torch_dtype in TORCH_DTYPES:
138
139
                self.assert_close_logits_and_output_strs(
                    DEFAULT_PROMPTS, model_case, torch_dtype
140
141
                )

142
    def test_others(self):
143
144
145
        if is_in_ci():
            return

146
        for model_case in ALL_OTHER_MODELS:
147
            # Only run a specified model
148
149
150
151
152
            if (
                "ONLY_RUN" in os.environ
                and os.environ["ONLY_RUN"] != model_case.model_path
            ):
                continue
153
154
155
156
157
158
159
160

            # Skip long prompts for models that does not have a long context
            prompts = DEFAULT_PROMPTS
            if model_case.model_path in ["HuggingFaceTB/SmolLM-135M-Instruct"]:
                prompts = [p for p in DEFAULT_PROMPTS if len(p) < 1000]

            # Assert the logits and output strs are close
            self.assert_close_logits_and_output_strs(prompts, model_case, torch.float16)
161

162

163
if __name__ == "__main__":
Mingyi's avatar
Mingyi committed
164
    unittest.main()