test_eagle_infer.py 24 KB
Newer Older
1
import json
2
import os
3
import random
4
import threading
5
import time
6
import unittest
7
8
from concurrent.futures import ThreadPoolExecutor
from functools import partial
9
from types import SimpleNamespace
10

11
import numpy as np
12
import requests
13
import torch
14

15
import sglang as sgl
16
from sglang.srt.hf_transformers_utils import get_tokenizer
17
from sglang.srt.utils import kill_process_tree
18
from sglang.test.few_shot_gsm8k import run_eval
19
from sglang.test.test_utils import (
20
21
    DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
    DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
22
    DEFAULT_MODEL_NAME_FOR_TEST_MLA,
23
24
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
25
    CustomTestCase,
26
    popen_launch_server,
27
    run_logprob_check,
28
)
29

30
31
32
torch_dtype = torch.float16
prefill_tolerance = 5e-2
decode_tolerance: float = 5e-2
33

34

35
class TestEAGLEEngine(CustomTestCase):
36
37
38
39
40
    BASE_CONFIG = {
        "model_path": DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
        "speculative_draft_model_path": DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
        "speculative_algorithm": "EAGLE",
        "speculative_num_steps": 5,
41
42
        "speculative_eagle_topk": 4,
        "speculative_num_draft_tokens": 8,
43
        "mem_fraction_static": 0.7,
Lianmin Zheng's avatar
Lianmin Zheng committed
44
        "cuda_graph_max_bs": 5,
45
    }
46
    NUM_CONFIGS = 2
47

48
49
50
    def setUp(self):
        self.prompt = "Today is a sunny day and I like"
        self.sampling_params = {"temperature": 0, "max_new_tokens": 8}
51

52
53
54
        ref_engine = sgl.Engine(
            model_path=self.BASE_CONFIG["model_path"], cuda_graph_max_bs=1
        )
55
        self.ref_output = ref_engine.generate(self.prompt, self.sampling_params)["text"]
56
57
        ref_engine.shutdown()

58
    def test_correctness(self):
59
        configs = [
60
            # Basic config
61
            self.BASE_CONFIG,
62
63
            # Chunked prefill
            {**self.BASE_CONFIG, "chunked_prefill_size": 4},
64
        ]
65

66
67
68
69
        for i, config in enumerate(configs[: self.NUM_CONFIGS]):
            with self.subTest(i=i):
                print(f"{config=}")
                engine = sgl.Engine(**config, log_level="info", decode_log_interval=10)
70
                try:
71
                    self._test_single_generation(engine)
72
                    self._test_batch_generation(engine)
73
74
                    self._test_eos_token(engine)
                    self._test_acc_length(engine)
75
76
                finally:
                    engine.shutdown()
77
                print("=" * 100)
78

79
    def _test_single_generation(self, engine):
80
81
82
83
        output = engine.generate(self.prompt, self.sampling_params)["text"]
        print(f"{output=}, {self.ref_output=}")
        self.assertEqual(output, self.ref_output)

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    def _test_batch_generation(self, engine):
        prompts = [
            "Hello, my name is",
            "The president of the United States is",
            "The capital of France is",
            "The future of AI is",
        ]
        params = {"temperature": 0, "max_new_tokens": 50}

        outputs = engine.generate(prompts, params)
        for prompt, output in zip(prompts, outputs):
            print(f"Prompt: {prompt}")
            print(f"Generated: {output['text']}")
            print("-" * 40)

        print(f"{engine.get_server_info()=}")

101
102
103
        avg_spec_accept_length = engine.get_server_info()["internal_states"][0][
            "avg_spec_accept_length"
        ]
104
105
106
        print(f"{avg_spec_accept_length=}")
        self.assertGreater(avg_spec_accept_length, 1.9)

107
108
109
    def _test_eos_token(self, engine):
        prompt = "[INST] <<SYS>>\nYou are a helpful assistant.\n<</SYS>>\nToday is a sunny day and I like [/INST]"
        params = {
110
            "temperature": 0.1,
111
112
113
114
115
116
117
118
119
120
121
            "max_new_tokens": 1024,
            "skip_special_tokens": False,
        }

        tokenizer = get_tokenizer(DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST)
        output = engine.generate(prompt, params)["text"]
        print(f"{output=}")

        tokens = tokenizer.encode(output, truncation=False)
        self.assertNotIn(tokenizer.eos_token_id, tokens)

122
123
    def _test_acc_length(self, engine):
        prompt = [
124
125
            "Human: Give me a fully functional FastAPI server. Show the python code.\n\nAssistant:",
        ] * 5  # test batched generation
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        sampling_params = {"temperature": 0, "max_new_tokens": 512}
        output = engine.generate(prompt, sampling_params)
        output = output[0]

        if "spec_verify_ct" in output["meta_info"]:
            acc_length = (
                output["meta_info"]["completion_tokens"]
                / output["meta_info"]["spec_verify_ct"]
            )
        else:
            acc_length = 1.0

        speed = (
            output["meta_info"]["completion_tokens"]
            / output["meta_info"]["e2e_latency"]
        )
        print(f"{acc_length=}")
143
144
145
146

        if engine.server_args.model_path == DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST:
            self.assertGreater(acc_length, 3.6)
        else:
147
            self.assertGreater(acc_length, 2.5)
148

149

150
class TestEAGLEEngineTokenMap(TestEAGLEEngine):
151
152
153
154
155
156
157
158
159
    BASE_CONFIG = {
        "model_path": "meta-llama/Meta-Llama-3-8B-Instruct",
        "speculative_draft_model_path": "lmsys/sglang-EAGLE-LLaMA3-Instruct-8B",
        "speculative_algorithm": "EAGLE",
        "speculative_num_steps": 5,
        "speculative_eagle_topk": 4,
        "speculative_num_draft_tokens": 8,
        "speculative_token_map": "thunlp/LLaMA3-Instruct-8B-FR-Spec/freq_32768.pt",
        "mem_fraction_static": 0.7,
Lianmin Zheng's avatar
Lianmin Zheng committed
160
        "cuda_graph_max_bs": 5,
161
        "dtype": "float16",
162
163
    }
    NUM_CONFIGS = 1
164
165


James Liu's avatar
James Liu committed
166
167
168
169
170
171
172
173
174
class TestEAGLE3Engine(TestEAGLEEngine):
    BASE_CONFIG = {
        "model_path": "meta-llama/Llama-3.1-8B-Instruct",
        "speculative_draft_model_path": "jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B",
        "speculative_algorithm": "EAGLE3",
        "speculative_num_steps": 5,
        "speculative_eagle_topk": 16,
        "speculative_num_draft_tokens": 64,
        "mem_fraction_static": 0.7,
Lianmin Zheng's avatar
Lianmin Zheng committed
175
        "cuda_graph_max_bs": 5,
James Liu's avatar
James Liu committed
176
177
178
179
180
        "dtype": "float16",
    }
    NUM_CONFIGS = 1


181
class TestEAGLEServer(CustomTestCase):
182
183
184
185
186
187
188
189
    PROMPTS = [
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nToday is a sunny day and I like[/INST]"
        '[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nWhat are the mental triggers in Jeff Walker\'s Product Launch Formula and "Launch" book?[/INST]',
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nSummarize Russell Brunson's Perfect Webinar Script...[/INST]",
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwho are you?[/INST]",
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwhere are you from?[/INST]",
    ]

190
191
192
193
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
194
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
195
196
197
198
199
200
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
201
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
202
                "--speculative-num-steps",
203
                5,
204
                "--speculative-eagle-topk",
205
                8,
206
                "--speculative-num-draft-tokens",
207
                64,
208
                "--mem-fraction-static",
209
                0.7,
210
                "--chunked-prefill-size",
211
212
213
                128,
                "--max-running-requests",
                8,
214
215
216
217
218
219
220
            ],
        )

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

221
222
    def send_request(self):
        time.sleep(random.uniform(0, 2))
223
        for prompt in self.PROMPTS:
224
225
226
227
228
229
230
231
232
233
234
235
            url = self.base_url + "/generate"
            data = {
                "text": prompt,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": 1024,
                },
            }
            response = requests.post(url, json=data)
            assert response.status_code == 200

    def send_requests_abort(self):
236
        for prompt in self.PROMPTS:
237
238
239
240
241
242
243
244
245
246
247
            try:
                time.sleep(random.uniform(0, 2))
                url = self.base_url + "/generate"
                data = {
                    "model": "base",
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 1024,
                    },
                }
248
                # set timeout = 1s, mock disconnected
249
250
251
252
253
254
                requests.post(url, json=data, timeout=1)
            except Exception as e:
                print(e)
                pass

    def test_request_abort(self):
255
        concurrency = 4
256
257
        threads = [
            threading.Thread(target=self.send_request) for _ in range(concurrency)
258
        ] + [
259
            threading.Thread(target=self.send_requests_abort)
260
261
            for _ in range(concurrency)
        ]
262
        for worker in threads:
263
            worker.start()
264
        for p in threads:
265
266
            p.join()

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    def test_max_token_one(self):
        requests.get(self.base_url + "/flush_cache")

        args = SimpleNamespace(
            num_shots=5,
            data_path=None,
            num_questions=200,
            max_new_tokens=1,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )

        # Just run and check it does not hang
        metrics = run_eval(args)
        self.assertGreater(metrics["output_throughput"], 50)

284
    def test_gsm8k(self):
285
        requests.get(self.base_url + "/flush_cache")
286

287
288
289
290
291
292
293
294
295
        args = SimpleNamespace(
            num_shots=5,
            data_path=None,
            num_questions=200,
            max_new_tokens=512,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )
296

297
298
299
300
        metrics = run_eval(args)
        print(f"{metrics=}")
        self.assertGreater(metrics["accuracy"], 0.20)

301
        server_info = requests.get(self.base_url + "/get_server_info").json()
302
303
304
        avg_spec_accept_length = server_info["internal_states"][0][
            "avg_spec_accept_length"
        ]
305
        print(f"{avg_spec_accept_length=}")
306
307
308
309
310
311
312

        speculative_eagle_topk = server_info["speculative_eagle_topk"]

        if speculative_eagle_topk == 1:
            self.assertGreater(avg_spec_accept_length, 2.5)
        else:
            self.assertGreater(avg_spec_accept_length, 3.5)
313

314
315
        # Wait a little bit so that the memory check happens.
        time.sleep(4)
316

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    def test_logprob_start_len(self):
        logprob_start_len = 4
        new_tokens = 4
        prompts = [
            "I have a very good idea on",
            "Today is a sunndy day and",
        ]

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": new_tokens,
                },
                "return_logprob": True,
                "top_logprobs_num": 5,
                "logprob_start_len": logprob_start_len,
            },
        )
        response_json = response.json()
        print(json.dumps(response_json, indent=2))

        for res in response_json:
            self.assertEqual(
                res["meta_info"]["prompt_tokens"],
                logprob_start_len + len(res["meta_info"]["input_token_logprobs"]),
            )

            self.assertEqual(res["meta_info"]["completion_tokens"], new_tokens)
            self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), new_tokens)

    def test_logprob_match(self):
        """Test the output logprobs are close to the input logprobs if we run a prefill again."""

        def run_generate(
            prompt, return_logprob=False, max_new_tokens=512, logprob_start_len=-1
        ):

            if isinstance(prompt, str):
                prompt_kwargs = {"text": prompt}
            else:
                prompt_kwargs = {"input_ids": prompt}

            response = requests.post(
                self.base_url + "/generate",
                json={
                    **prompt_kwargs,
                    "sampling_params": {
                        "temperature": 1.0,
                        "max_new_tokens": max_new_tokens,
                        "ignore_eos": True,
                    },
                    "return_logprob": return_logprob,
                    "return_text_in_logprobs": True,
                    "logprob_start_len": logprob_start_len,
                },
            )
            return response.json()

        prompt = "I have a very good idea on how to"

        gen = run_generate(prompt, return_logprob=True, logprob_start_len=0)
        output_logprobs = np.array(
            [x[0] for x in gen["meta_info"]["output_token_logprobs"]]
        )
        num_prompts_tokens = gen["meta_info"]["prompt_tokens"]

        input_tokens = [x[1] for x in gen["meta_info"]["input_token_logprobs"]]
        output_tokens = [x[1] for x in gen["meta_info"]["output_token_logprobs"]]

        new_prompt = input_tokens + output_tokens
        score = run_generate(
            new_prompt, return_logprob=True, logprob_start_len=0, max_new_tokens=0
        )
        output_logprobs_score = np.array(
            [
                x[0]
                for x in score["meta_info"]["input_token_logprobs"][num_prompts_tokens:]
            ]
        )

        print(f"{output_logprobs[-10:]=}")
        print(f"{output_logprobs_score[-10:]=}")

        diff = np.abs(output_logprobs - output_logprobs_score)
        max_diff = np.max(diff)
        self.assertLess(max_diff, 0.25)

    def test_logprob_mixed(self):
        args = []
        temperature = 0
        # input_len, output_len, temperature, logprob_start_len, return_logprob, top_logprobs_num
        # Llama 2 context length seems to be only 2k, so we can only test small length.
        for input_len in [200, 500, 1000, 2000]:
            for output_len in [4, 8]:
                for logprob_start_len in [0, 100, 300, 800, 1998]:
                    for return_logprob in [True, False]:
                        for top_logprobs_num in [0, 5]:

                            if logprob_start_len >= input_len:
                                continue

                            args.append(
                                (
                                    input_len,
                                    output_len,
                                    temperature,
                                    logprob_start_len,
                                    return_logprob,
                                    top_logprobs_num,
                                )
                            )

        random.shuffle(args)

        func = partial(run_logprob_check, self)
        with ThreadPoolExecutor(8) as executor:
            list(executor.map(func, args))

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    def run_decode(self, sampling_params):
        return_logprob = True
        top_logprobs_num = 5
        return_text = True
        n = 1

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": "Human: Write a travel blog post to Hawaii.\n\nAssistant:",
                "sampling_params": {
                    "max_new_tokens": 48,
                    "n": n,
                    "temperature": 0.7,
                    **sampling_params,
                },
                "return_logprob": return_logprob,
                "top_logprobs_num": top_logprobs_num,
                "return_text_in_logprobs": return_text,
                "logprob_start_len": 0,
            },
        )
        self.assertEqual(response.status_code, 200)
        print(json.dumps(response.json()))
        print("=" * 100)

    def test_penalty_mixed(self):
        args = [
            {},
            {},
            {},
            {"frequency_penalty": 2},
            {"presence_penalty": 1},
            {"min_new_tokens": 16},
            {"frequency_penalty": 0.2},
            {"presence_penalty": 0.4},
            {"min_new_tokens": 8},
            {"frequency_penalty": 0.4, "presence_penalty": 0.8},
            {"frequency_penalty": 0.4, "min_new_tokens": 12},
            {"presence_penalty": 0.8, "min_new_tokens": 12},
            {"presence_penalty": -0.3, "frequency_penalty": 1.3, "min_new_tokens": 32},
            {"presence_penalty": 0.3, "frequency_penalty": -1.3, "min_new_tokens": 32},
        ]
        random.shuffle(args * 5)
        with ThreadPoolExecutor(8) as executor:
            list(executor.map(self.run_decode, args))

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    def test_constrained_decoding(self):
        messages = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": "Give me a json"},
        ]

        response = requests.post(
            self.base_url + "/v1/chat/completions",
            json={
                "model": DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
                "messages": messages,
                "temperature": 0,
                "response_format": {"type": "json_object"},
            },
        )
        self.assertEqual(response.status_code, 200)
        res = response.json()

        # Validate response structure
        self.assertIn("choices", res)
        self.assertEqual(len(res["choices"]), 1)
        self.assertIn("message", res["choices"][0])
        self.assertIn("content", res["choices"][0]["message"])

        # Validate JSON content
        content_json = res["choices"][0]["message"]["content"]
        is_valid_json = True
        try:
            content = json.loads(content_json)
            self.assertIsInstance(content, dict)
        except Exception:
            print(f"parse JSON failed: {content_json}")
            is_valid_json = False
        self.assertTrue(is_valid_json)

520

521
class TestEAGLERetract(TestEAGLEServer):
522
523
    @classmethod
    def setUpClass(cls):
524
525
        # These config helps find a leak.
        os.environ["SGLANG_CI_SMALL_KV_SIZE"] = "4500"
526
527
528
529
530
531
532
533
534
535
536
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
537
                5,
538
                "--speculative-eagle-topk",
539
                8,
540
                "--speculative-num-draft-tokens",
541
                64,
542
                "--mem-fraction-static",
543
                0.7,
544
                "--chunked-prefill-size",
545
                128,
546
                "--max-running-requests",
547
                64,
548
549
550
551
            ],
        )


552
553
554
555
556
557
558
559
560
561
562
563
564
565
class TestEAGLEServerTriton(TestEAGLEServer):
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
566
                5,
567
                "--speculative-eagle-topk",
568
                8,
569
                "--speculative-num-draft-tokens",
570
                64,
571
                "--mem-fraction-static",
572
                0.7,
573
574
                "--attention-backend",
                "triton",
575
576
                "--max-running-requests",
                8,
577
578
579
580
            ],
        )


581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
class TestEAGLEDraftExtend(CustomTestCase):
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
                1,
                "--speculative-eagle-topk",
                1,
                "--speculative-num-draft-tokens",
                2,
                "--max-running-requests",
                4,
                "--attention-backend",
                "fa3",
            ],
        )
606
        cls.accept_len_threshold = 1.50
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_one_batch_accept_length(self):
        prompts = [
            "Hello, my name is",
            "The president of the United States is",
            "The capital of France is",
            "The future of AI is",
        ]
        url = self.base_url + "/generate"
        data = {
            "text": prompts,
            "sampling_params": {
                "temperature": 0,
                "max_new_tokens": 512,
            },
        }
        response = requests.post(url, json=data)
        self.assertEqual(response.status_code, 200)
        outputs = response.json()
        for i in range(len(prompts)):
            output = outputs[i]
            if "spec_verify_ct" in output["meta_info"]:
                acc_length = (
                    output["meta_info"]["completion_tokens"]
                    / output["meta_info"]["spec_verify_ct"]
                )
            else:
                acc_length = 1.0

            print(f"{acc_length=}")
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
            self.assertGreater(acc_length, self.accept_len_threshold)


class TestEAGLEDraftExtendFlashinfer(TestEAGLEDraftExtend):
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
                1,
                "--speculative-eagle-topk",
                1,
                "--speculative-num-draft-tokens",
                2,
                "--max-running-requests",
                4,
                "--attention-backend",
                "flashinfer",
            ],
        )
        cls.accept_len_threshold = 1.50


class TestEAGLEDraftExtendTriton(TestEAGLEDraftExtend):
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
                1,
                "--speculative-eagle-topk",
                1,
                "--speculative-num-draft-tokens",
                2,
                "--max-running-requests",
                4,
                "--attention-backend",
                "triton",
            ],
        )
        cls.accept_len_threshold = 1.50


class TestEAGLEDraftExtendFlashinferMLA(TestEAGLEDraftExtend):
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_MODEL_NAME_FOR_TEST_MLA,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-num-steps",
                1,
                "--speculative-eagle-topk",
                1,
                "--speculative-num-draft-tokens",
                2,
                "--max-running-requests",
                4,
                "--attention-backend",
                "flashinfer",
            ],
        )
        cls.accept_len_threshold = 1.85
724
725


726
727
if __name__ == "__main__":
    unittest.main()