function_calling.ipynb 28.7 KB
Newer Older
Tanjiro's avatar
Tanjiro committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
YAMY's avatar
YAMY committed
7
    "# Tool and Function Calling\n",
Tanjiro's avatar
Tanjiro committed
8
    "\n",
9
    "This guide demonstrates how to use SGLang’s [Function calling](https://platform.openai.com/docs/guides/function-calling) functionality."
Tanjiro's avatar
Tanjiro committed
10
11
12
13
14
15
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
YAMY's avatar
YAMY committed
16
17
18
19
20
21
22
23
    "## OpenAI Compatible API"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Launching the Server"
Tanjiro's avatar
Tanjiro committed
24
25
26
27
28
29
30
31
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
YAMY's avatar
YAMY committed
32
    "import json\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
33
    "from sglang.test.doc_patch import launch_server_cmd\n",
34
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
35
    "from openai import OpenAI\n",
Tanjiro's avatar
Tanjiro committed
36
    "\n",
37
    "server_process, port = launch_server_cmd(\n",
38
    "    \"python3 -m sglang.launch_server --model-path Qwen/Qwen2.5-7B-Instruct --tool-call-parser qwen25 --host 0.0.0.0\"  # qwen25\n",
Tanjiro's avatar
Tanjiro committed
39
    ")\n",
40
    "wait_for_server(f\"http://localhost:{port}\")"
YAMY's avatar
YAMY committed
41
42
43
44
45
46
47
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that `--tool-call-parser` defines the parser used to interpret responses. Currently supported parsers include:\n",
Tanjiro's avatar
Tanjiro committed
48
    "\n",
49
50
    "- llama3: Llama 3.1 / 3.2 / 3.3 (e.g. meta-llama/Llama-3.1-8B-Instruct, meta-llama/Llama-3.2-1B-Instruct, meta-llama/Llama-3.3-70B-Instruct).\n",
    "- llama4: Llama 4 (e.g. meta-llama/Llama-4-Scout-17B-16E-Instruct).\n",
YAMY's avatar
YAMY committed
51
52
    "- mistral: Mistral (e.g. mistralai/Mistral-7B-Instruct-v0.3, mistralai/Mistral-Nemo-Instruct-2407, mistralai/\n",
    "Mistral-Nemo-Instruct-2407, mistralai/Mistral-7B-v0.3).\n",
53
54
    "- qwen25: Qwen 2.5 (e.g. Qwen/Qwen2.5-1.5B-Instruct, Qwen/Qwen2.5-7B-Instruct) and QwQ (i.e. Qwen/QwQ-32B). Especially, for QwQ, we can enable the reasoning parser together with tool call parser, details about reasoning parser can be found in [reasoning parser](https://docs.sglang.ai/backend/separate_reasoning.html).\n",
    "- deepseekv3: DeepSeek-v3 (e.g., deepseek-ai/DeepSeek-V3-0324).\n"
Tanjiro's avatar
Tanjiro committed
55
56
57
58
59
60
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
YAMY's avatar
YAMY committed
61
62
    "### Define Tools for Function Call\n",
    "Below is a Python snippet that shows how to define a tool as a dictionary. The dictionary includes a tool name, a description, and property defined Parameters."
Tanjiro's avatar
Tanjiro committed
63
64
65
66
67
68
69
70
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
YAMY's avatar
YAMY committed
71
    "# Define tools\n",
Tanjiro's avatar
Tanjiro committed
72
73
74
75
76
77
78
79
80
    "tools = [\n",
    "    {\n",
    "        \"type\": \"function\",\n",
    "        \"function\": {\n",
    "            \"name\": \"get_current_weather\",\n",
    "            \"description\": \"Get the current weather in a given location\",\n",
    "            \"parameters\": {\n",
    "                \"type\": \"object\",\n",
    "                \"properties\": {\n",
YAMY's avatar
YAMY committed
81
82
83
84
85
    "                    \"city\": {\n",
    "                        \"type\": \"string\",\n",
    "                        \"description\": \"The city to find the weather for, e.g. 'San Francisco'\",\n",
    "                    },\n",
    "                    \"state\": {\n",
Tanjiro's avatar
Tanjiro committed
86
    "                        \"type\": \"string\",\n",
YAMY's avatar
YAMY committed
87
88
89
90
91
92
93
    "                        \"description\": \"the two-letter abbreviation for the state that the city is\"\n",
    "                        \" in, e.g. 'CA' which would mean 'California'\",\n",
    "                    },\n",
    "                    \"unit\": {\n",
    "                        \"type\": \"string\",\n",
    "                        \"description\": \"The unit to fetch the temperature in\",\n",
    "                        \"enum\": [\"celsius\", \"fahrenheit\"],\n",
Tanjiro's avatar
Tanjiro committed
94
95
    "                    },\n",
    "                },\n",
YAMY's avatar
YAMY committed
96
    "                \"required\": [\"city\", \"state\", \"unit\"],\n",
Tanjiro's avatar
Tanjiro committed
97
98
99
    "            },\n",
    "        },\n",
    "    }\n",
YAMY's avatar
YAMY committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    "]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Define Messages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_messages():\n",
    "    return [\n",
    "        {\n",
    "            \"role\": \"user\",\n",
120
    "            \"content\": \"What's the weather like in Boston today? Output a reasoning before act, then use the tools to help you.\",\n",
YAMY's avatar
YAMY committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    "        }\n",
    "    ]\n",
    "\n",
    "\n",
    "messages = get_messages()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Initialize the Client"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Initialize OpenAI-like client\n",
142
    "client = OpenAI(api_key=\"None\", base_url=f\"http://0.0.0.0:{port}/v1\")\n",
YAMY's avatar
YAMY committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    "model_name = client.models.list().data[0].id"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "###  Non-Streaming Request"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Non-streaming mode test\n",
    "response_non_stream = client.chat.completions.create(\n",
    "    model=model_name,\n",
    "    messages=messages,\n",
163
    "    temperature=0,\n",
164
165
    "    top_p=0.95,\n",
    "    max_tokens=1024,\n",
YAMY's avatar
YAMY committed
166
167
168
169
    "    stream=False,  # Non-streaming\n",
    "    tools=tools,\n",
    ")\n",
    "print_highlight(\"Non-stream response:\")\n",
170
171
172
173
174
    "print(response_non_stream)\n",
    "print_highlight(\"==== content ====\")\n",
    "print(response_non_stream.choices[0].message.content)\n",
    "print_highlight(\"==== tool_calls ====\")\n",
    "print(response_non_stream.choices[0].message.tool_calls)"
YAMY's avatar
YAMY committed
175
176
177
178
179
180
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
181
182
    "#### Handle Tools\n",
    "When the engine determines it should call a particular tool, it will return arguments or partial arguments through the response. You can parse these arguments and later invoke the tool accordingly."
YAMY's avatar
YAMY committed
183
184
185
186
187
188
189
190
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
191
192
193
    "name_non_stream = response_non_stream.choices[0].message.tool_calls[0].function.name\n",
    "arguments_non_stream = (\n",
    "    response_non_stream.choices[0].message.tool_calls[0].function.arguments\n",
YAMY's avatar
YAMY committed
194
195
    ")\n",
    "\n",
196
197
    "print_highlight(f\"Final streamed function call name: {name_non_stream}\")\n",
    "print_highlight(f\"Final streamed function call arguments: {arguments_non_stream}\")"
YAMY's avatar
YAMY committed
198
199
200
201
202
203
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
204
    "### Streaming Request"
YAMY's avatar
YAMY committed
205
206
207
208
209
210
211
212
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
213
214
215
216
217
    "# Streaming mode test\n",
    "print_highlight(\"Streaming response:\")\n",
    "response_stream = client.chat.completions.create(\n",
    "    model=model_name,\n",
    "    messages=messages,\n",
218
    "    temperature=0,\n",
219
220
221
222
    "    top_p=0.95,\n",
    "    max_tokens=1024,\n",
    "    stream=True,  # Enable streaming\n",
    "    tools=tools,\n",
YAMY's avatar
YAMY committed
223
224
    ")\n",
    "\n",
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    "texts = \"\"\n",
    "tool_calls = []\n",
    "name = \"\"\n",
    "arguments = \"\"\n",
    "for chunk in response_stream:\n",
    "    if chunk.choices[0].delta.content:\n",
    "        texts += chunk.choices[0].delta.content\n",
    "    if chunk.choices[0].delta.tool_calls:\n",
    "        tool_calls.append(chunk.choices[0].delta.tool_calls[0])\n",
    "print_highlight(\"==== Text ====\")\n",
    "print(texts)\n",
    "\n",
    "print_highlight(\"==== Tool Call ====\")\n",
    "for tool_call in tool_calls:\n",
    "    print(tool_call)"
YAMY's avatar
YAMY committed
240
241
242
243
244
245
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
246
247
    "#### Handle Tools\n",
    "When the engine determines it should call a particular tool, it will return arguments or partial arguments through the response. You can parse these arguments and later invoke the tool accordingly."
YAMY's avatar
YAMY committed
248
249
250
251
252
253
254
255
256
257
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Parse and combine function call arguments\n",
    "arguments = []\n",
258
259
260
261
262
263
    "for tool_call in tool_calls:\n",
    "    if tool_call.function.name:\n",
    "        print_highlight(f\"Streamed function call name: {tool_call.function.name}\")\n",
    "\n",
    "    if tool_call.function.arguments:\n",
    "        arguments.append(tool_call.function.arguments)\n",
YAMY's avatar
YAMY committed
264
265
266
    "\n",
    "# Combine all fragments into a single JSON string\n",
    "full_arguments = \"\".join(arguments)\n",
267
    "print_highlight(f\"streamed function call arguments: {full_arguments}\")"
YAMY's avatar
YAMY committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Define a Tool Function"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# This is a demonstration, define real function according to your usage.\n",
    "def get_current_weather(city: str, state: str, unit: \"str\"):\n",
    "    return (\n",
    "        f\"The weather in {city}, {state} is 85 degrees {unit}. It is \"\n",
    "        \"partly cloudly, with highs in the 90's.\"\n",
    "    )\n",
    "\n",
    "\n",
    "available_tools = {\"get_current_weather\": get_current_weather}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
299
    "### Execute the Tool"
YAMY's avatar
YAMY committed
300
301
302
303
304
305
306
307
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
308
    "messages.append(response_non_stream.choices[0].message)\n",
YAMY's avatar
YAMY committed
309
    "\n",
310
311
312
313
314
315
316
    "# Call the corresponding tool function\n",
    "tool_call = messages[-1].tool_calls[0]\n",
    "tool_name = tool_call.function.name\n",
    "tool_to_call = available_tools[tool_name]\n",
    "result = tool_to_call(**(json.loads(tool_call.function.arguments)))\n",
    "print_highlight(f\"Function call result: {result}\")\n",
    "# messages.append({\"role\": \"tool\", \"content\": result, \"name\": tool_name})\n",
YAMY's avatar
YAMY committed
317
318
    "messages.append(\n",
    "    {\n",
319
320
321
322
    "        \"role\": \"tool\",\n",
    "        \"tool_call_id\": tool_call.id,\n",
    "        \"content\": str(result),\n",
    "        \"name\": tool_name,\n",
YAMY's avatar
YAMY committed
323
324
    "    }\n",
    ")\n",
Tanjiro's avatar
Tanjiro committed
325
    "\n",
YAMY's avatar
YAMY committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    "print_highlight(f\"Updated message history: {messages}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Send Results Back to Model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "final_response = client.chat.completions.create(\n",
Tanjiro's avatar
Tanjiro committed
343
344
    "    model=model_name,\n",
    "    messages=messages,\n",
345
    "    temperature=0,\n",
346
    "    top_p=0.95,\n",
Tanjiro's avatar
Tanjiro committed
347
348
349
    "    stream=False,\n",
    "    tools=tools,\n",
    ")\n",
YAMY's avatar
YAMY committed
350
    "print_highlight(\"Non-stream response:\")\n",
351
352
353
354
    "print(final_response)\n",
    "\n",
    "print_highlight(\"==== Text ====\")\n",
    "print(final_response.choices[0].message.content)"
YAMY's avatar
YAMY committed
355
356
   ]
  },
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Tool Choice Mode\n",
    "\n",
    "SGLang supports OpenAI's `tool_choice` parameter to control when and which tools the model should call. This feature is implemented using EBNF (Extended Backus-Naur Form) grammar to ensure reliable tool calling behavior.\n",
    "\n",
    "### Supported Tool Choice Options\n",
    "\n",
    "- **`tool_choice=\"required\"`**: Forces the model to call at least one tool\n",
    "- **`tool_choice={\"type\": \"function\", \"function\": {\"name\": \"specific_function\"}}`**: Forces the model to call a specific function\n",
    "\n",
    "### Backend Compatibility\n",
    "\n",
    "Tool choice is fully supported with the **Xgrammar backend**, which is the default grammar backend (`--grammar-backend xgrammar`). However, it may not be fully supported with other backends such as `outlines`.\n",
    "\n",
    "### Example: Required Tool Choice"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
381
   "outputs": [],
382
383
384
   "source": [
    "from openai import OpenAI\n",
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
385
    "from sglang.test.doc_patch import launch_server_cmd\n",
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    "\n",
    "# Start a new server session for tool choice examples\n",
    "server_process_tool_choice, port_tool_choice = launch_server_cmd(\n",
    "    \"python3 -m sglang.launch_server --model-path Qwen/Qwen2.5-7B-Instruct --tool-call-parser qwen25 --host 0.0.0.0\"\n",
    ")\n",
    "wait_for_server(f\"http://localhost:{port_tool_choice}\")\n",
    "\n",
    "# Initialize client for tool choice examples\n",
    "client_tool_choice = OpenAI(\n",
    "    api_key=\"None\", base_url=f\"http://0.0.0.0:{port_tool_choice}/v1\"\n",
    ")\n",
    "model_name_tool_choice = client_tool_choice.models.list().data[0].id\n",
    "\n",
    "# Example with tool_choice=\"required\" - forces the model to call a tool\n",
    "messages_required = [\n",
    "    {\"role\": \"user\", \"content\": \"Hello, what is the capital of France?\"}\n",
    "]\n",
    "\n",
    "# Define tools\n",
    "tools = [\n",
    "    {\n",
    "        \"type\": \"function\",\n",
    "        \"function\": {\n",
    "            \"name\": \"get_current_weather\",\n",
    "            \"description\": \"Get the current weather in a given location\",\n",
    "            \"parameters\": {\n",
    "                \"type\": \"object\",\n",
    "                \"properties\": {\n",
    "                    \"city\": {\n",
    "                        \"type\": \"string\",\n",
    "                        \"description\": \"The city to find the weather for, e.g. 'San Francisco'\",\n",
    "                    },\n",
    "                    \"unit\": {\n",
    "                        \"type\": \"string\",\n",
    "                        \"description\": \"The unit to fetch the temperature in\",\n",
    "                        \"enum\": [\"celsius\", \"fahrenheit\"],\n",
    "                    },\n",
    "                },\n",
    "                \"required\": [\"city\", \"unit\"],\n",
    "            },\n",
    "        },\n",
    "    }\n",
    "]\n",
    "\n",
    "response_required = client_tool_choice.chat.completions.create(\n",
    "    model=model_name_tool_choice,\n",
    "    messages=messages_required,\n",
    "    temperature=0,\n",
    "    max_tokens=1024,\n",
    "    tools=tools,\n",
    "    tool_choice=\"required\",  # Force the model to call a tool\n",
    ")\n",
    "\n",
    "print_highlight(\"Response with tool_choice='required':\")\n",
    "print(\"Content:\", response_required.choices[0].message.content)\n",
    "print(\"Tool calls:\", response_required.choices[0].message.tool_calls)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Example: Specific Function Choice\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
455
   "outputs": [],
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
   "source": [
    "# Example with specific function choice - forces the model to call a specific function\n",
    "messages_specific = [\n",
    "    {\"role\": \"user\", \"content\": \"What are the most attactive places in France?\"}\n",
    "]\n",
    "\n",
    "response_specific = client_tool_choice.chat.completions.create(\n",
    "    model=model_name_tool_choice,\n",
    "    messages=messages_specific,\n",
    "    temperature=0,\n",
    "    max_tokens=1024,\n",
    "    tools=tools,\n",
    "    tool_choice={\n",
    "        \"type\": \"function\",\n",
    "        \"function\": {\"name\": \"get_current_weather\"},\n",
    "    },  # Force the model to call the specific get_current_weather function\n",
    ")\n",
    "\n",
    "print_highlight(\"Response with specific function choice:\")\n",
    "print(\"Content:\", response_specific.choices[0].message.content)\n",
    "print(\"Tool calls:\", response_specific.choices[0].message.tool_calls)\n",
    "\n",
    "if response_specific.choices[0].message.tool_calls:\n",
    "    tool_call = response_specific.choices[0].message.tool_calls[0]\n",
    "    print(f\"Called function: {tool_call.function.name}\")\n",
    "    print(f\"Arguments: {tool_call.function.arguments}\")"
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
484
485
486
487
488
489
490
491
492
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process_tool_choice)"
   ]
  },
YAMY's avatar
YAMY committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Native API and SGLang Runtime (SRT)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "import requests\n",
    "\n",
    "# generate an answer\n",
510
    "tokenizer = AutoTokenizer.from_pretrained(\"Qwen/Qwen2.5-7B-Instruct\")\n",
YAMY's avatar
YAMY committed
511
512
513
514
515
516
517
518
519
    "\n",
    "messages = get_messages()\n",
    "\n",
    "input = tokenizer.apply_chat_template(\n",
    "    messages,\n",
    "    tokenize=False,\n",
    "    add_generation_prompt=True,\n",
    "    tools=tools,\n",
    ")\n",
Tanjiro's avatar
Tanjiro committed
520
    "\n",
521
    "gen_url = f\"http://localhost:{port}/generate\"\n",
522
523
524
525
526
    "gen_data = {\n",
    "    \"text\": input,\n",
    "    \"sampling_params\": {\n",
    "        \"skip_special_tokens\": False,\n",
    "        \"max_new_tokens\": 1024,\n",
527
    "        \"temperature\": 0,\n",
528
529
530
    "        \"top_p\": 0.95,\n",
    "    },\n",
    "}\n",
YAMY's avatar
YAMY committed
531
    "gen_response = requests.post(gen_url, json=gen_data).json()[\"text\"]\n",
532
    "print_highlight(\"==== Response ====\")\n",
YAMY's avatar
YAMY committed
533
    "print(gen_response)\n",
Tanjiro's avatar
Tanjiro committed
534
    "\n",
YAMY's avatar
YAMY committed
535
    "# parse the response\n",
536
    "parse_url = f\"http://localhost:{port}/parse_function_call\"\n",
Tanjiro's avatar
Tanjiro committed
537
    "\n",
YAMY's avatar
YAMY committed
538
539
    "function_call_input = {\n",
    "    \"text\": gen_response,\n",
540
    "    \"tool_call_parser\": \"qwen25\",\n",
YAMY's avatar
YAMY committed
541
542
    "    \"tools\": tools,\n",
    "}\n",
Tanjiro's avatar
Tanjiro committed
543
    "\n",
YAMY's avatar
YAMY committed
544
545
    "function_call_response = requests.post(parse_url, json=function_call_input)\n",
    "function_call_response_json = function_call_response.json()\n",
546
547
548
549
    "\n",
    "print_highlight(\"==== Text ====\")\n",
    "print(function_call_response_json[\"normal_text\"])\n",
    "print_highlight(\"==== Calls ====\")\n",
YAMY's avatar
YAMY committed
550
551
    "print(\"function name: \", function_call_response_json[\"calls\"][0][\"name\"])\n",
    "print(\"function arguments: \", function_call_response_json[\"calls\"][0][\"parameters\"])"
Tanjiro's avatar
Tanjiro committed
552
553
554
555
556
557
558
559
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
560
    "terminate_process(server_process)"
Tanjiro's avatar
Tanjiro committed
561
562
563
564
565
566
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
YAMY's avatar
YAMY committed
567
568
569
570
571
572
573
574
575
576
    "## Offline Engine API"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import sglang as sgl\n",
577
    "from sglang.srt.function_call.function_call_parser import FunctionCallParser\n",
YAMY's avatar
YAMY committed
578
579
    "from sglang.srt.managers.io_struct import Tool, Function\n",
    "\n",
580
    "llm = sgl.Engine(model_path=\"Qwen/Qwen2.5-7B-Instruct\")\n",
581
    "tokenizer = llm.tokenizer_manager.tokenizer\n",
YAMY's avatar
YAMY committed
582
583
584
585
586
    "input_ids = tokenizer.apply_chat_template(\n",
    "    messages, tokenize=True, add_generation_prompt=True, tools=tools\n",
    ")\n",
    "\n",
    "sampling_params = {\n",
587
    "    \"max_new_tokens\": 1024,\n",
588
    "    \"temperature\": 0,\n",
YAMY's avatar
YAMY committed
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    "    \"top_p\": 0.95,\n",
    "    \"skip_special_tokens\": False,\n",
    "}\n",
    "\n",
    "# 1) Offline generation\n",
    "result = llm.generate(input_ids=input_ids, sampling_params=sampling_params)\n",
    "generated_text = result[\"text\"]  # Assume there is only one prompt\n",
    "\n",
    "print(\"=== Offline Engine Output Text ===\")\n",
    "print(generated_text)\n",
    "\n",
    "\n",
    "# 2) Parse using FunctionCallParser\n",
    "def convert_dict_to_tool(tool_dict: dict) -> Tool:\n",
    "    function_dict = tool_dict.get(\"function\", {})\n",
    "    return Tool(\n",
    "        type=tool_dict.get(\"type\", \"function\"),\n",
    "        function=Function(\n",
    "            name=function_dict.get(\"name\"),\n",
    "            description=function_dict.get(\"description\"),\n",
    "            parameters=function_dict.get(\"parameters\"),\n",
    "        ),\n",
    "    )\n",
    "\n",
    "\n",
    "tools = [convert_dict_to_tool(raw_tool) for raw_tool in tools]\n",
    "\n",
616
    "parser = FunctionCallParser(tools=tools, tool_call_parser=\"qwen25\")\n",
YAMY's avatar
YAMY committed
617
618
    "normal_text, calls = parser.parse_non_stream(generated_text)\n",
    "\n",
619
    "print(\"=== Parsing Result ===\")\n",
YAMY's avatar
YAMY committed
620
621
622
623
624
625
    "print(\"Normal text portion:\", normal_text)\n",
    "print(\"Function call portion:\")\n",
    "for call in calls:\n",
    "    # call: ToolCallItem\n",
    "    print(f\"  - tool name: {call.name}\")\n",
    "    print(f\"    parameters: {call.parameters}\")\n",
Tanjiro's avatar
Tanjiro committed
626
    "\n",
YAMY's avatar
YAMY committed
627
628
629
630
631
632
633
634
635
636
637
638
    "# 3) If needed, perform additional logic on the parsed functions, such as automatically calling the corresponding function to obtain a return value, etc."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "llm.shutdown()"
   ]
  },
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Pythonic Tool Call Format (Llama-3.2 / Llama-3.3 / Llama-4)\n",
    "\n",
    "Some Llama models (such as Llama-3.2-1B, Llama-3.2-3B, Llama-3.3-70B, and Llama-4) support a \"pythonic\" tool call format, where the model outputs function calls as Python code, e.g.:\n",
    "\n",
    "```python\n",
    "[get_current_weather(city=\"San Francisco\", state=\"CA\", unit=\"celsius\")]\n",
    "```\n",
    "\n",
    "- The output is a Python list of function calls, with arguments as Python literals (not JSON).\n",
    "- Multiple tool calls can be returned in the same list:\n",
    "```python\n",
    "[get_current_weather(city=\"San Francisco\", state=\"CA\", unit=\"celsius\"),\n",
    " get_current_weather(city=\"New York\", state=\"NY\", unit=\"fahrenheit\")]\n",
    "```\n",
    "\n",
    "For more information, refer to Meta’s documentation on  [Zero shot function calling](https://github.com/meta-llama/llama-models/blob/main/models/llama4/prompt_format.md#zero-shot-function-calling---system-message).\n",
    "\n",
    "### How to enable\n",
    "- Launch the server with `--tool-call-parser pythonic`\n",
    "- You may also specify --chat-template with the improved template for the model (e.g., `--chat-template=examples/chat_template/tool_chat_template_llama4_pythonic.jinja`).\n",
    "This is recommended because the model expects a special prompt format to reliably produce valid pythonic tool call outputs. The template ensures that the prompt structure (e.g., special tokens, message boundaries like `<|eom|>`, and function call delimiters) matches what the model was trained or fine-tuned on. If you do not use the correct chat template, tool calling may fail or produce inconsistent results.\n",
    "\n",
    "#### Forcing Pythonic Tool Call Output Without a Chat Template\n",
    "If you don't want to specify a chat template, you must give the model extremely explicit instructions in your messages to enforce pythonic output. For example, for `Llama-3.2-1B-Instruct`, you need:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import openai\n",
    "\n",
    "server_process, port = launch_server_cmd(\n",
    "    \" python3 -m sglang.launch_server --model-path meta-llama/Llama-3.2-1B-Instruct --tool-call-parser pythonic --tp 1\"  # llama-3.2-1b-instruct\n",
    ")\n",
    "wait_for_server(f\"http://localhost:{port}\")\n",
    "\n",
    "tools = [\n",
    "    {\n",
    "        \"type\": \"function\",\n",
    "        \"function\": {\n",
    "            \"name\": \"get_weather\",\n",
    "            \"description\": \"Get the current weather for a given location.\",\n",
    "            \"parameters\": {\n",
    "                \"type\": \"object\",\n",
    "                \"properties\": {\n",
    "                    \"location\": {\n",
    "                        \"type\": \"string\",\n",
    "                        \"description\": \"The name of the city or location.\",\n",
    "                    }\n",
    "                },\n",
    "                \"required\": [\"location\"],\n",
    "            },\n",
    "        },\n",
    "    },\n",
    "    {\n",
    "        \"type\": \"function\",\n",
    "        \"function\": {\n",
    "            \"name\": \"get_tourist_attractions\",\n",
    "            \"description\": \"Get a list of top tourist attractions for a given city.\",\n",
    "            \"parameters\": {\n",
    "                \"type\": \"object\",\n",
    "                \"properties\": {\n",
    "                    \"city\": {\n",
    "                        \"type\": \"string\",\n",
    "                        \"description\": \"The name of the city to find attractions for.\",\n",
    "                    }\n",
    "                },\n",
    "                \"required\": [\"city\"],\n",
    "            },\n",
    "        },\n",
    "    },\n",
    "]\n",
    "\n",
    "\n",
    "def get_messages():\n",
    "    return [\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": (\n",
    "                \"You are a travel assistant. \"\n",
    "                \"When asked to call functions, ALWAYS respond ONLY with a python list of function calls, \"\n",
    "                \"using this format: [func_name1(param1=value1, param2=value2), func_name2(param=value)]. \"\n",
    "                \"Do NOT use JSON, do NOT use variables, do NOT use any other format. \"\n",
    "                \"Here is an example:\\n\"\n",
    "                '[get_weather(location=\"Paris\"), get_tourist_attractions(city=\"Paris\")]'\n",
    "            ),\n",
    "        },\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": (\n",
    "                \"I'm planning a trip to Tokyo next week. What's the weather like and what are some top tourist attractions? \"\n",
    "                \"Propose parallel tool calls at once, using the python list of function calls format as shown above.\"\n",
    "            ),\n",
    "        },\n",
    "    ]\n",
    "\n",
    "\n",
    "messages = get_messages()\n",
    "\n",
    "client = openai.Client(base_url=f\"http://localhost:{port}/v1\", api_key=\"xxxxxx\")\n",
    "model_name = client.models.list().data[0].id\n",
    "\n",
    "\n",
    "response_non_stream = client.chat.completions.create(\n",
    "    model=model_name,\n",
    "    messages=messages,\n",
752
753
    "    temperature=0,\n",
    "    top_p=0.9,\n",
754
755
756
757
758
759
760
761
762
    "    stream=False,  # Non-streaming\n",
    "    tools=tools,\n",
    ")\n",
    "print_highlight(\"Non-stream response:\")\n",
    "print(response_non_stream)\n",
    "\n",
    "response_stream = client.chat.completions.create(\n",
    "    model=model_name,\n",
    "    messages=messages,\n",
763
764
    "    temperature=0,\n",
    "    top_p=0.9,\n",
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
    "    stream=True,\n",
    "    tools=tools,\n",
    ")\n",
    "texts = \"\"\n",
    "tool_calls = []\n",
    "name = \"\"\n",
    "arguments = \"\"\n",
    "\n",
    "for chunk in response_stream:\n",
    "    if chunk.choices[0].delta.content:\n",
    "        texts += chunk.choices[0].delta.content\n",
    "    if chunk.choices[0].delta.tool_calls:\n",
    "        tool_calls.append(chunk.choices[0].delta.tool_calls[0])\n",
    "\n",
    "print_highlight(\"Streaming Response:\")\n",
    "print_highlight(\"==== Text ====\")\n",
    "print(texts)\n",
    "\n",
    "print_highlight(\"==== Tool Call ====\")\n",
    "for tool_call in tool_calls:\n",
    "    print(tool_call)\n",
    "\n",
    "terminate_process(server_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> **Note:**  \n",
    "> The model may still default to JSON if it was heavily finetuned on that format. Prompt engineering (including examples) is the only way to increase the chance of pythonic output if you are not using a chat template."
   ]
  },
YAMY's avatar
YAMY committed
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## How to support a new model?\n",
    "1. Update the TOOLS_TAG_LIST in sglang/srt/function_call_parser.py with the model’s tool tags. Currently supported tags include:\n",
    "```\n",
    "\tTOOLS_TAG_LIST = [\n",
    "\t    “<|plugin|>“,\n",
    "\t    “<function=“,\n",
    "\t    “<tool_call>“,\n",
    "\t    “<|python_tag|>“,\n",
    "\t    “[TOOL_CALLS]”\n",
    "\t]\n",
    "```\n",
    "2. Create a new detector class in sglang/srt/function_call_parser.py that inherits from BaseFormatDetector. The detector should handle the model’s specific function call format. For example:\n",
    "```\n",
    "    class NewModelDetector(BaseFormatDetector):\n",
    "```\n",
    "3. Add the new detector to the MultiFormatParser class that manages all the format detectors."
Tanjiro's avatar
Tanjiro committed
818
819
820
821
822
   ]
  }
 ],
 "metadata": {
  "language_info": {
823
824
825
826
827
828
829
830
831
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3"
Tanjiro's avatar
Tanjiro committed
832
833
834
  }
 },
 "nbformat": 4,
835
 "nbformat_minor": 4
Tanjiro's avatar
Tanjiro committed
836
}