Unverified Commit a68ed766 authored by mlmz's avatar mlmz Committed by GitHub
Browse files

feat: append more comprehensive fields in messages instead of merely role and content (#5996)

parent 82653f66
......@@ -38,7 +38,9 @@
" from patch import launch_server_cmd\n",
"else:\n",
" from sglang.utils import launch_server_cmd\n",
" import nest_asyncio\n",
"\n",
" nest_asyncio.apply()\n",
"\n",
"server_process, port = launch_server_cmd(\n",
" \"python3 -m sglang.launch_server --model-path Qwen/Qwen2.5-7B-Instruct --tool-call-parser qwen25 --host 0.0.0.0\" # qwen25\n",
......@@ -164,7 +166,7 @@
"response_non_stream = client.chat.completions.create(\n",
" model=model_name,\n",
" messages=messages,\n",
" temperature=0.1,\n",
" temperature=0,\n",
" top_p=0.95,\n",
" max_tokens=1024,\n",
" stream=False, # Non-streaming\n",
......@@ -219,7 +221,7 @@
"response_stream = client.chat.completions.create(\n",
" model=model_name,\n",
" messages=messages,\n",
" temperature=0.1,\n",
" temperature=0,\n",
" top_p=0.95,\n",
" max_tokens=1024,\n",
" stream=True, # Enable streaming\n",
......@@ -309,23 +311,24 @@
"metadata": {},
"outputs": [],
"source": [
"call_data = json.loads(full_arguments)\n",
"messages.append(response_non_stream.choices[0].message)\n",
"\n",
"# Call the corresponding tool function\n",
"tool_call = messages[-1].tool_calls[0]\n",
"tool_name = tool_call.function.name\n",
"tool_to_call = available_tools[tool_name]\n",
"result = tool_to_call(**(json.loads(tool_call.function.arguments)))\n",
"print_highlight(f\"Function call result: {result}\")\n",
"# messages.append({\"role\": \"tool\", \"content\": result, \"name\": tool_name})\n",
"messages.append(\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": \"\",\n",
" \"tool_calls\": {\"name\": \"get_current_weather\", \"arguments\": full_arguments},\n",
" \"role\": \"tool\",\n",
" \"tool_call_id\": tool_call.id,\n",
" \"content\": str(result),\n",
" \"name\": tool_name,\n",
" }\n",
")\n",
"\n",
"# Call the corresponding tool function\n",
"tool_name = messages[-1][\"tool_calls\"][\"name\"]\n",
"tool_to_call = available_tools[tool_name]\n",
"result = tool_to_call(**call_data)\n",
"print_highlight(f\"Function call result: {result}\")\n",
"messages.append({\"role\": \"tool\", \"content\": result, \"name\": tool_name})\n",
"\n",
"print_highlight(f\"Updated message history: {messages}\")"
]
},
......@@ -345,7 +348,7 @@
"final_response = client.chat.completions.create(\n",
" model=model_name,\n",
" messages=messages,\n",
" temperature=0.1,\n",
" temperature=0,\n",
" top_p=0.95,\n",
" stream=False,\n",
" tools=tools,\n",
......@@ -391,7 +394,7 @@
" \"sampling_params\": {\n",
" \"skip_special_tokens\": False,\n",
" \"max_new_tokens\": 1024,\n",
" \"temperature\": 0.1,\n",
" \"temperature\": 0,\n",
" \"top_p\": 0.95,\n",
" },\n",
"}\n",
......@@ -452,7 +455,7 @@
"\n",
"sampling_params = {\n",
" \"max_new_tokens\": 1024,\n",
" \"temperature\": 0.1,\n",
" \"temperature\": 0,\n",
" \"top_p\": 0.95,\n",
" \"skip_special_tokens\": False,\n",
"}\n",
......@@ -540,14 +543,6 @@
"outputs": [],
"source": [
"import openai\n",
"from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
"from sglang.test.test_utils import is_in_ci\n",
"\n",
"\n",
"if is_in_ci():\n",
" from patch import launch_server_cmd\n",
"else:\n",
" from sglang.utils import launch_server_cmd\n",
"\n",
"server_process, port = launch_server_cmd(\n",
" \" python3 -m sglang.launch_server --model-path meta-llama/Llama-3.2-1B-Instruct --tool-call-parser pythonic --tp 1\" # llama-3.2-1b-instruct\n",
......@@ -624,8 +619,8 @@
"response_non_stream = client.chat.completions.create(\n",
" model=model_name,\n",
" messages=messages,\n",
" temperature=0.8,\n",
" top_p=0.8,\n",
" temperature=0,\n",
" top_p=0.9,\n",
" stream=False, # Non-streaming\n",
" tools=tools,\n",
")\n",
......@@ -635,8 +630,8 @@
"response_stream = client.chat.completions.create(\n",
" model=model_name,\n",
" messages=messages,\n",
" temperature=0.8,\n",
" top_p=0.8,\n",
" temperature=0,\n",
" top_p=0.9,\n",
" stream=True,\n",
" tools=tools,\n",
")\n",
......
......@@ -14,6 +14,7 @@
"""Conversion between OpenAI APIs and native SRT APIs"""
import asyncio
import base64
import json
import logging
import os
......@@ -970,17 +971,19 @@ def v1_chat_generate_request(
for message in request.messages:
if message.content is None:
message.content = ""
if isinstance(message.content, str):
openai_compatible_messages.append(
{"role": message.role, "content": message.content}
)
msg_dict = message.dict()
if isinstance(msg_dict.get("content"), list):
for chunk in msg_dict["content"]:
if isinstance(chunk, dict) and chunk.get("type") == "text":
new_msg = msg_dict.copy()
new_msg["content"] = chunk["text"]
new_msg = {
k: v for k, v in new_msg.items() if v is not None
}
openai_compatible_messages.append(new_msg)
else:
content_list = message.dict()["content"]
for content in content_list:
if content["type"] == "text":
openai_compatible_messages.append(
{"role": message.role, "content": content["text"]}
)
msg_dict = {k: v for k, v in msg_dict.items() if v is not None}
openai_compatible_messages.append(msg_dict)
if (
openai_compatible_messages
and openai_compatible_messages[-1]["role"] == "assistant"
......@@ -1290,7 +1293,8 @@ def v1_chat_generate_response(
text, call_info_list = parser.parse_non_stream(text)
tool_calls = [
ToolCall(
id=str(call_info.tool_index),
id=f"call_{base64.urlsafe_b64encode(uuid.uuid4().bytes).rstrip(b'=').decode()}",
index=call_info.tool_index,
function=FunctionResponse(
name=call_info.name, arguments=call_info.parameters
),
......@@ -1406,6 +1410,7 @@ async def v1_chat_completions(
reasoning_parser_dict = {}
async def generate_stream_resp():
tool_call_first = True
is_firsts = {}
stream_buffers = {}
n_prev_tokens = {}
......@@ -1572,7 +1577,6 @@ async def v1_chat_completions(
# 2) if we found calls, we output them as separate chunk(s)
for call_item in calls:
# transform call_item -> FunctionResponse + ToolCall
if finish_reason_type == "stop":
latest_delta_len = 0
if isinstance(call_item.parameters, str):
......@@ -1595,15 +1599,19 @@ async def v1_chat_completions(
call_item.parameters = remaining_call
finish_reason_type = "tool_calls"
tool_call = ToolCall(
id=str(call_item.tool_index),
id=(
f"call_{base64.urlsafe_b64encode(uuid.uuid4().bytes).rstrip(b'=').decode()}"
if tool_call_first
else None
),
index=call_item.tool_index,
function=FunctionResponse(
name=call_item.name,
arguments=call_item.parameters,
),
)
tool_call_first = False
choice_data = ChatCompletionResponseStreamChoice(
index=index,
delta=DeltaMessage(tool_calls=[tool_call]),
......
......@@ -250,9 +250,29 @@ ChatCompletionMessageContentPart = Union[
]
class FunctionResponse(BaseModel):
"""Function response."""
name: Optional[str] = None
arguments: Optional[str] = None
class ToolCall(BaseModel):
"""Tool call response."""
id: Optional[str] = None
index: Optional[int] = None
type: Literal["function"] = "function"
function: FunctionResponse
class ChatCompletionMessageGenericParam(BaseModel):
role: Literal["system", "assistant", "tool"]
content: Union[str, List[ChatCompletionMessageContentTextPart], None]
tool_call_id: Optional[str] = None
name: Optional[str] = None
reasoning_content: Optional[str] = None
tool_calls: Optional[List[ToolCall]] = Field(default=None, examples=[None])
class ChatCompletionMessageUserParam(BaseModel):
......@@ -378,22 +398,6 @@ class ChatCompletionRequest(BaseModel):
bootstrap_room: Optional[int] = None
class FunctionResponse(BaseModel):
"""Function response."""
name: Optional[str] = None
arguments: Optional[str] = None
class ToolCall(BaseModel):
"""Tool call response."""
id: str
index: Optional[int] = None
type: Literal["function"] = "function"
function: FunctionResponse
class ChatMessage(BaseModel):
role: Optional[str] = None
content: Optional[str] = None
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment