test_eagle_infer.py 18.2 KB
Newer Older
1
import json
2
import multiprocessing as mp
3
import os
4
import random
5
import threading
6
import time
7
import unittest
8
9
from concurrent.futures import ThreadPoolExecutor
from functools import partial
10
from types import SimpleNamespace
11
from typing import List, Optional
12

13
import numpy as np
14
import requests
15
import torch
16

17
import sglang as sgl
18
from sglang.srt.hf_transformers_utils import get_tokenizer
19
from sglang.srt.utils import kill_process_tree
20
from sglang.test.few_shot_gsm8k import run_eval
21
from sglang.test.runners import DEFAULT_PROMPTS, SRTRunner
22
from sglang.test.test_utils import (
23
24
    DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
    DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
25
26
27
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    popen_launch_server,
28
    run_logprob_check,
29
)
30

31
32
33
torch_dtype = torch.float16
prefill_tolerance = 5e-2
decode_tolerance: float = 5e-2
34

35
36

class TestEAGLEEngine(unittest.TestCase):
37
38
39
40
41
    BASE_CONFIG = {
        "model_path": DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
        "speculative_draft_model_path": DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
        "speculative_algorithm": "EAGLE",
        "speculative_num_steps": 5,
42
43
        "speculative_eagle_topk": 4,
        "speculative_num_draft_tokens": 8,
44
        "mem_fraction_static": 0.7,
45
        "cuda_graph_max_bs": 5,
46
    }
47
    NUM_CONFIGS = 3
48

49
50
51
    def setUp(self):
        self.prompt = "Today is a sunny day and I like"
        self.sampling_params = {"temperature": 0, "max_new_tokens": 8}
52

53
54
55
        ref_engine = sgl.Engine(
            model_path=self.BASE_CONFIG["model_path"], cuda_graph_max_bs=1
        )
56
        self.ref_output = ref_engine.generate(self.prompt, self.sampling_params)["text"]
57
58
        ref_engine.shutdown()

59
    def test_correctness(self):
60
        configs = [
61
            # Basic config
62
            self.BASE_CONFIG,
63
            # Disable cuda graph
64
            {**self.BASE_CONFIG, "disable_cuda_graph": True},
65
66
            # Chunked prefill
            {**self.BASE_CONFIG, "chunked_prefill_size": 4},
67
        ]
68

69
70
71
72
        for i, config in enumerate(configs[: self.NUM_CONFIGS]):
            with self.subTest(i=i):
                print(f"{config=}")
                engine = sgl.Engine(**config, log_level="info", decode_log_interval=10)
73
                try:
74
                    self._test_single_generation(engine)
75
                    self._test_batch_generation(engine)
76
77
                    self._test_eos_token(engine)
                    self._test_acc_length(engine)
78
79
                finally:
                    engine.shutdown()
80
                print("=" * 100)
81

82
    def _test_single_generation(self, engine):
83
84
85
86
        output = engine.generate(self.prompt, self.sampling_params)["text"]
        print(f"{output=}, {self.ref_output=}")
        self.assertEqual(output, self.ref_output)

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    def _test_batch_generation(self, engine):
        prompts = [
            "Hello, my name is",
            "The president of the United States is",
            "The capital of France is",
            "The future of AI is",
        ]
        params = {"temperature": 0, "max_new_tokens": 50}

        outputs = engine.generate(prompts, params)
        for prompt, output in zip(prompts, outputs):
            print(f"Prompt: {prompt}")
            print(f"Generated: {output['text']}")
            print("-" * 40)

        print(f"{engine.get_server_info()=}")

        avg_spec_accept_length = engine.get_server_info()["avg_spec_accept_length"]
        print(f"{avg_spec_accept_length=}")
        self.assertGreater(avg_spec_accept_length, 1.9)

108
109
110
    def _test_eos_token(self, engine):
        prompt = "[INST] <<SYS>>\nYou are a helpful assistant.\n<</SYS>>\nToday is a sunny day and I like [/INST]"
        params = {
111
            "temperature": 0.1,
112
113
114
115
116
117
118
119
120
121
122
            "max_new_tokens": 1024,
            "skip_special_tokens": False,
        }

        tokenizer = get_tokenizer(DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST)
        output = engine.generate(prompt, params)["text"]
        print(f"{output=}")

        tokens = tokenizer.encode(output, truncation=False)
        self.assertNotIn(tokenizer.eos_token_id, tokens)

123
124
    def _test_acc_length(self, engine):
        prompt = [
125
126
            "Human: Give me a fully functional FastAPI server. Show the python code.\n\nAssistant:",
        ] * 5  # test batched generation
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        sampling_params = {"temperature": 0, "max_new_tokens": 512}
        output = engine.generate(prompt, sampling_params)
        output = output[0]

        if "spec_verify_ct" in output["meta_info"]:
            acc_length = (
                output["meta_info"]["completion_tokens"]
                / output["meta_info"]["spec_verify_ct"]
            )
        else:
            acc_length = 1.0

        speed = (
            output["meta_info"]["completion_tokens"]
            / output["meta_info"]["e2e_latency"]
        )
        print(f"{acc_length=}")
144
145
146
147
148

        if engine.server_args.model_path == DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST:
            self.assertGreater(acc_length, 3.6)
        else:
            self.assertGreater(acc_length, 2.6)
149

150

151
class TestEAGLEEngineTokenMap(TestEAGLEEngine):
152
153
154
155
156
157
158
159
160
161
    BASE_CONFIG = {
        "model_path": "meta-llama/Meta-Llama-3-8B-Instruct",
        "speculative_draft_model_path": "lmsys/sglang-EAGLE-LLaMA3-Instruct-8B",
        "speculative_algorithm": "EAGLE",
        "speculative_num_steps": 5,
        "speculative_eagle_topk": 4,
        "speculative_num_draft_tokens": 8,
        "speculative_token_map": "thunlp/LLaMA3-Instruct-8B-FR-Spec/freq_32768.pt",
        "mem_fraction_static": 0.7,
        "cuda_graph_max_bs": 5,
162
        "dtype": "float16",
163
164
    }
    NUM_CONFIGS = 1
165
166


James Liu's avatar
James Liu committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
class TestEAGLE3Engine(TestEAGLEEngine):
    BASE_CONFIG = {
        "model_path": "meta-llama/Llama-3.1-8B-Instruct",
        "speculative_draft_model_path": "jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B",
        "speculative_algorithm": "EAGLE3",
        "speculative_num_steps": 5,
        "speculative_eagle_topk": 16,
        "speculative_num_draft_tokens": 64,
        "mem_fraction_static": 0.7,
        "cuda_graph_max_bs": 5,
        "dtype": "float16",
    }
    NUM_CONFIGS = 1


182
class TestEAGLEServer(unittest.TestCase):
183
184
185
186
187
188
189
190
    PROMPTS = [
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nToday is a sunny day and I like[/INST]"
        '[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nWhat are the mental triggers in Jeff Walker\'s Product Launch Formula and "Launch" book?[/INST]',
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nSummarize Russell Brunson's Perfect Webinar Script...[/INST]",
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwho are you?[/INST]",
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwhere are you from?[/INST]",
    ]

191
192
193
194
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
195
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
196
197
198
199
200
201
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
202
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
203
                "--speculative-num-steps",
204
                5,
205
                "--speculative-eagle-topk",
206
                8,
207
                "--speculative-num-draft-tokens",
208
                64,
209
                "--mem-fraction-static",
210
                0.7,
211
                "--chunked-prefill-size",
212
213
214
                128,
                "--max-running-requests",
                8,
215
216
217
218
219
220
221
            ],
        )

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

222
223
    def send_request(self):
        time.sleep(random.uniform(0, 2))
224
        for prompt in self.PROMPTS:
225
226
227
228
229
230
231
232
233
234
235
236
            url = self.base_url + "/generate"
            data = {
                "text": prompt,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": 1024,
                },
            }
            response = requests.post(url, json=data)
            assert response.status_code == 200

    def send_requests_abort(self):
237
        for prompt in self.PROMPTS:
238
239
240
241
242
243
244
245
246
247
248
            try:
                time.sleep(random.uniform(0, 2))
                url = self.base_url + "/generate"
                data = {
                    "model": "base",
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 1024,
                    },
                }
249
                # set timeout = 1s, mock disconnected
250
251
252
253
254
255
                requests.post(url, json=data, timeout=1)
            except Exception as e:
                print(e)
                pass

    def test_request_abort(self):
256
        concurrency = 4
257
258
        threads = [
            threading.Thread(target=self.send_request) for _ in range(concurrency)
259
        ] + [
260
            threading.Thread(target=self.send_requests_abort)
261
262
            for _ in range(concurrency)
        ]
263
        for worker in threads:
264
            worker.start()
265
        for p in threads:
266
267
            p.join()

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    def test_max_token_one(self):
        requests.get(self.base_url + "/flush_cache")

        args = SimpleNamespace(
            num_shots=5,
            data_path=None,
            num_questions=200,
            max_new_tokens=1,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )

        # Just run and check it does not hang
        metrics = run_eval(args)
        self.assertGreater(metrics["output_throughput"], 50)

285
    def test_gsm8k(self):
286
        requests.get(self.base_url + "/flush_cache")
287

288
289
290
291
292
293
294
295
296
        args = SimpleNamespace(
            num_shots=5,
            data_path=None,
            num_questions=200,
            max_new_tokens=512,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )
297

298
299
300
301
        metrics = run_eval(args)
        print(f"{metrics=}")
        self.assertGreater(metrics["accuracy"], 0.20)

302
303
304
        server_info = requests.get(self.base_url + "/get_server_info")
        avg_spec_accept_length = server_info.json()["avg_spec_accept_length"]
        print(f"{avg_spec_accept_length=}")
305
        self.assertGreater(avg_spec_accept_length, 3.5)
306

307
308
        # Wait a little bit so that the memory check happens.
        time.sleep(4)
309

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
    def test_logprob_start_len(self):
        logprob_start_len = 4
        new_tokens = 4
        prompts = [
            "I have a very good idea on",
            "Today is a sunndy day and",
        ]

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": new_tokens,
                },
                "return_logprob": True,
                "top_logprobs_num": 5,
                "logprob_start_len": logprob_start_len,
            },
        )
        response_json = response.json()
        print(json.dumps(response_json, indent=2))

        for res in response_json:
            self.assertEqual(
                res["meta_info"]["prompt_tokens"],
                logprob_start_len + len(res["meta_info"]["input_token_logprobs"]),
            )

            self.assertEqual(res["meta_info"]["completion_tokens"], new_tokens)
            self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), new_tokens)

    def test_logprob_match(self):
        """Test the output logprobs are close to the input logprobs if we run a prefill again."""

        def run_generate(
            prompt, return_logprob=False, max_new_tokens=512, logprob_start_len=-1
        ):

            if isinstance(prompt, str):
                prompt_kwargs = {"text": prompt}
            else:
                prompt_kwargs = {"input_ids": prompt}

            response = requests.post(
                self.base_url + "/generate",
                json={
                    **prompt_kwargs,
                    "sampling_params": {
                        "temperature": 1.0,
                        "max_new_tokens": max_new_tokens,
                        "ignore_eos": True,
                    },
                    "return_logprob": return_logprob,
                    "return_text_in_logprobs": True,
                    "logprob_start_len": logprob_start_len,
                },
            )
            return response.json()

        prompt = "I have a very good idea on how to"

        gen = run_generate(prompt, return_logprob=True, logprob_start_len=0)
        output_logprobs = np.array(
            [x[0] for x in gen["meta_info"]["output_token_logprobs"]]
        )
        num_prompts_tokens = gen["meta_info"]["prompt_tokens"]

        input_tokens = [x[1] for x in gen["meta_info"]["input_token_logprobs"]]
        output_tokens = [x[1] for x in gen["meta_info"]["output_token_logprobs"]]

        new_prompt = input_tokens + output_tokens
        score = run_generate(
            new_prompt, return_logprob=True, logprob_start_len=0, max_new_tokens=0
        )
        output_logprobs_score = np.array(
            [
                x[0]
                for x in score["meta_info"]["input_token_logprobs"][num_prompts_tokens:]
            ]
        )

        print(f"{output_logprobs[-10:]=}")
        print(f"{output_logprobs_score[-10:]=}")

        diff = np.abs(output_logprobs - output_logprobs_score)
        max_diff = np.max(diff)
        self.assertLess(max_diff, 0.25)

    def test_logprob_mixed(self):
        args = []
        temperature = 0
        # input_len, output_len, temperature, logprob_start_len, return_logprob, top_logprobs_num
        # Llama 2 context length seems to be only 2k, so we can only test small length.
        for input_len in [200, 500, 1000, 2000]:
            for output_len in [4, 8]:
                for logprob_start_len in [0, 100, 300, 800, 1998]:
                    for return_logprob in [True, False]:
                        for top_logprobs_num in [0, 5]:

                            if logprob_start_len >= input_len:
                                continue

                            args.append(
                                (
                                    input_len,
                                    output_len,
                                    temperature,
                                    logprob_start_len,
                                    return_logprob,
                                    top_logprobs_num,
                                )
                            )

        random.shuffle(args)

        func = partial(run_logprob_check, self)
        with ThreadPoolExecutor(8) as executor:
            list(executor.map(func, args))

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    def run_decode(self, sampling_params):
        return_logprob = True
        top_logprobs_num = 5
        return_text = True
        n = 1

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": "Human: Write a travel blog post to Hawaii.\n\nAssistant:",
                "sampling_params": {
                    "max_new_tokens": 48,
                    "n": n,
                    "temperature": 0.7,
                    **sampling_params,
                },
                "return_logprob": return_logprob,
                "top_logprobs_num": top_logprobs_num,
                "return_text_in_logprobs": return_text,
                "logprob_start_len": 0,
            },
        )
        self.assertEqual(response.status_code, 200)
        print(json.dumps(response.json()))
        print("=" * 100)

    def test_penalty_mixed(self):
        args = [
            {},
            {},
            {},
            {"frequency_penalty": 2},
            {"presence_penalty": 1},
            {"min_new_tokens": 16},
            {"frequency_penalty": 0.2},
            {"presence_penalty": 0.4},
            {"min_new_tokens": 8},
            {"frequency_penalty": 0.4, "presence_penalty": 0.8},
            {"frequency_penalty": 0.4, "min_new_tokens": 12},
            {"presence_penalty": 0.8, "min_new_tokens": 12},
            {"presence_penalty": -0.3, "frequency_penalty": 1.3, "min_new_tokens": 32},
            {"presence_penalty": 0.3, "frequency_penalty": -1.3, "min_new_tokens": 32},
        ]
        random.shuffle(args * 5)
        with ThreadPoolExecutor(8) as executor:
            list(executor.map(self.run_decode, args))

478

479
class TestEAGLERetract(TestEAGLEServer):
480
481
    @classmethod
    def setUpClass(cls):
482
483
        # These config helps find a leak.
        os.environ["SGLANG_CI_SMALL_KV_SIZE"] = "4500"
484
485
486
487
488
489
490
491
492
493
494
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
495
                5,
496
                "--speculative-eagle-topk",
497
                8,
498
                "--speculative-num-draft-tokens",
499
                64,
500
                "--mem-fraction-static",
501
                0.7,
502
                "--chunked-prefill-size",
503
                128,
504
                "--max-running-requests",
505
                64,
506
507
508
509
            ],
        )


510
511
512
513
514
515
516
517
518
519
520
521
522
523
class TestEAGLEServerTriton(TestEAGLEServer):
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
524
                5,
525
                "--speculative-eagle-topk",
526
                8,
527
                "--speculative-num-draft-tokens",
528
                64,
529
                "--mem-fraction-static",
530
                0.7,
531
532
                "--attention-backend",
                "triton",
533
534
                "--max-running-requests",
                8,
535
536
537
538
            ],
        )


539
540
if __name__ == "__main__":
    unittest.main()