bench_other.py 4.09 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
import argparse
import json
import time
Liangsheng Yin's avatar
Liangsheng Yin committed
4
5
from concurrent.futures import ThreadPoolExecutor
from functools import partial
Lianmin Zheng's avatar
Lianmin Zheng committed
6
7
8

from tqdm import tqdm

Liangsheng Yin's avatar
Liangsheng Yin committed
9
10
11
12
13
14
15
from sglang.test.test_utils import (
    add_common_other_args_and_parse,
    call_generate_lightllm,
    call_generate_srt_raw,
    call_generate_vllm,
)
from sglang.utils import dump_state_text, read_jsonl
Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

USER_PREFIX = "[INST] "
USER_SUFFIX = " [/INST]"
ASSISTANT_PREFIX = ""
ASSISTANT_SUFFIX = " </s><s>"


def multi_document_qa(docs, question, generate):
    s = USER_PREFIX
    s += "Pleaes answer a question according to given documents.\n"
    s += "Question:" + question + "Documents begin.\n"

    s += "".join(docs)

    s += "\nDocuments end."
Liangsheng Yin's avatar
Liangsheng Yin committed
31
32
33
34
35
    s += (
        "\n\nBased on the above documents, please answer this question:\n"
        + question
        + "\nAnswer in three words or fewer."
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    s += USER_SUFFIX
    s += ASSISTANT_PREFIX
    answer = generate(s, max_tokens=16, stop=None)
    return answer


def main(args):
    lines = read_jsonl(args.data_path)
    l = lines[0]
    arguments = []
    labels = []

    num_docs = 10
    if args.backend == "guidance":
        num_docs = 7  # due to OOM

Liangsheng Yin's avatar
Liangsheng Yin committed
52
53
54
55
56
57
58
    for i in range(len(l["questions"][: args.num_questions])):
        arguments.append(
            {
                "docs": l["documents"][:num_docs],
                "question": l["questions"][i],
            }
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        labels.append(l["answers"][i])
    states = [None] * len(arguments)

    # Select backend
    if args.backend == "lightllm":
        url = f"{args.host}:{args.port}/generate"
        generate = partial(call_generate_lightllm, url=url, temperature=0)
    elif args.backend == "vllm":
        url = f"{args.host}:{args.port}/generate"
        generate = partial(call_generate_vllm, url=url, temperature=0)
    elif args.backend == "srt-raw":
        url = f"{args.host}:{args.port}/generate"
        generate = partial(call_generate_srt_raw, url=url, temperature=0)
    elif args.backend == "guidance":
Liangsheng Yin's avatar
Liangsheng Yin committed
73
        from guidance import gen, models
Lianmin Zheng's avatar
Lianmin Zheng committed
74

Liangsheng Yin's avatar
Liangsheng Yin committed
75
76
77
78
79
        model = models.LlamaCpp(
            "/home/ubuntu/model_weights/CodeLlama-7b-instruct-hf.gguf",
            n_gpu_layers=-1,
            n_ctx=11000,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
80
81

        def generate(prompt, max_tokens, stop):
Liangsheng Yin's avatar
Liangsheng Yin committed
82
83
84
85
86
            out = (
                model
                + prompt
                + gen(name="answer", max_tokens=max_tokens, temperature=0, stop=stop)
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
            return out["answer"]

        # warmup
        generate("Hello!", max_tokens=8, stop=None)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")

    # Run requests
    def get_one_answer(i):
        states[i] = multi_document_qa(generate=generate, **arguments[i])

    tic = time.time()
    if args.parallel == 1:
        for i in tqdm(range(len(labels))):
            get_one_answer(i)
    else:
        with ThreadPoolExecutor(args.parallel) as executor:
            executor.map(get_one_answer, list(range(len(labels))))
    latency = time.time() - tic

    # Compute accuracy
    print(states)
    correct = 0
    for s, label in zip(states, labels):
        answer = s.lower()
        if all(x in answer for x in label.lower().split(" ")):
            correct += 1
    accuracy = correct / len(labels)
    print(f"Accuracy: {accuracy:.3f}")
    print(f"Latency: {latency:.3f}")

    # Write results
    dump_state_text(f"tmp_output_{args.backend}.txt", states)

    with open(args.result_file, "a") as fout:
        value = {
            "task": "multi_document_qa",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "num_requests": args.num_questions,
            "accuracy": accuracy,
            "other": {
                "num_questions": args.num_questions,
                "parallel": args.parallel,
Liangsheng Yin's avatar
Liangsheng Yin committed
132
            },
Lianmin Zheng's avatar
Lianmin Zheng committed
133
134
135
136
137
138
139
140
141
142
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, default="questions.jsonl")
    parser.add_argument("--num-questions", type=int, default=100)
    args = add_common_other_args_and_parse(parser)
    main(args)