bench_other.py 3.95 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import argparse
import asyncio
from concurrent.futures import ThreadPoolExecutor
from functools import partial
import json
import time

from tqdm import tqdm
import numpy as np
from sglang.test.test_utils import add_common_other_args_and_parse, call_generate_lightllm, call_generate_vllm, call_generate_srt_raw
from sglang.utils import read_jsonl, dump_state_text


USER_PREFIX = "[INST] "
USER_SUFFIX = " [/INST]"
ASSISTANT_PREFIX = ""
ASSISTANT_SUFFIX = " </s><s>"


def multi_document_qa(docs, question, generate):
    s = USER_PREFIX
    s += "Pleaes answer a question according to given documents.\n"
    s += "Question:" + question + "Documents begin.\n"

    s += "".join(docs)

    s += "\nDocuments end."
    s += ("\n\nBased on the above documents, please answer this question:\n" + question + "\nAnswer in three words or fewer.")
    s += USER_SUFFIX
    s += ASSISTANT_PREFIX
    answer = generate(s, max_tokens=16, stop=None)
    return answer


def main(args):
    lines = read_jsonl(args.data_path)
    l = lines[0]
    arguments = []
    labels = []

    num_docs = 10
    if args.backend == "guidance":
        num_docs = 7  # due to OOM

    for i in range(len(l["questions"][:args.num_questions])):
        arguments.append({
            "docs": l["documents"][:num_docs],
            "question": l["questions"][i],
        })
        labels.append(l["answers"][i])
    states = [None] * len(arguments)

    # Select backend
    if args.backend == "lightllm":
        url = f"{args.host}:{args.port}/generate"
        generate = partial(call_generate_lightllm, url=url, temperature=0)
    elif args.backend == "vllm":
        url = f"{args.host}:{args.port}/generate"
        generate = partial(call_generate_vllm, url=url, temperature=0)
    elif args.backend == "srt-raw":
        url = f"{args.host}:{args.port}/generate"
        generate = partial(call_generate_srt_raw, url=url, temperature=0)
    elif args.backend == "guidance":
        from guidance import models, gen

        model = models.LlamaCpp("/home/ubuntu/model_weights/CodeLlama-7b-instruct-hf.gguf", n_gpu_layers=-1, n_ctx=11000)

        def generate(prompt, max_tokens, stop):
            out = model + prompt + gen(name="answer",
                max_tokens=max_tokens, temperature=0, stop=stop)
            return out["answer"]

        # warmup
        generate("Hello!", max_tokens=8, stop=None)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")

    # Run requests
    def get_one_answer(i):
        states[i] = multi_document_qa(generate=generate, **arguments[i])

    tic = time.time()
    if args.parallel == 1:
        for i in tqdm(range(len(labels))):
            get_one_answer(i)
    else:
        with ThreadPoolExecutor(args.parallel) as executor:
            executor.map(get_one_answer, list(range(len(labels))))
    latency = time.time() - tic

    # Compute accuracy
    print(states)
    correct = 0
    for s, label in zip(states, labels):
        answer = s.lower()
        if all(x in answer for x in label.lower().split(" ")):
            correct += 1
    accuracy = correct / len(labels)
    print(f"Accuracy: {accuracy:.3f}")
    print(f"Latency: {latency:.3f}")

    # Write results
    dump_state_text(f"tmp_output_{args.backend}.txt", states)

    with open(args.result_file, "a") as fout:
        value = {
            "task": "multi_document_qa",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "num_requests": args.num_questions,
            "accuracy": accuracy,
            "other": {
                "num_questions": args.num_questions,
                "parallel": args.parallel,
            }
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, default="questions.jsonl")
    parser.add_argument("--num-questions", type=int, default=100)
    args = add_common_other_args_and_parse(parser)
    main(args)