"src/fwd_conv_batchnorm_rewrite.cpp" did not exist on "30a94e97ac1f0e9f3b1d87820d9ae3540e21512d"
bench_other.py 7.45 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
import argparse
import ast
import asyncio
import json
import re
import time
Liangsheng Yin's avatar
Liangsheng Yin committed
7
8
from concurrent.futures import ThreadPoolExecutor
from functools import partial
Lianmin Zheng's avatar
Lianmin Zheng committed
9
10
11

import numpy as np

Liangsheng Yin's avatar
Liangsheng Yin committed
12
13
14
15
16
17
18
from sglang.test.test_utils import (
    add_common_other_args_and_parse,
    call_generate_lightllm,
    call_generate_srt_raw,
    call_generate_vllm,
)
from sglang.utils import dump_state_text, read_jsonl
Lianmin Zheng's avatar
Lianmin Zheng committed
19
20
21
22
23
24

INVALID = -9999999


def get_answer_value(answer_str):
    answer_str = answer_str.replace(",", "")
Liangsheng Yin's avatar
Liangsheng Yin committed
25
    numbers = re.findall(r"\d+", answer_str)
Lianmin Zheng's avatar
Lianmin Zheng committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    if len(numbers) < 1:
        return INVALID
    try:
        return ast.literal_eval(numbers[-1])
    except SyntaxError:
        return INVALID


prompt_lib = [
    "Let us think step by step.",
    "Approach this methodically. Let's dissect the problem into smaller, more manageable parts.",
    "It's important to proceed step by step, ensuring accuracy at each stage.",
    "Take a deep breath and break this down.",
    "A little bit of arithmetic and a logical approach will help us quickly arrive at the solution to this problem.",
    "I am extremely good at math.",
]


def multi_chain_gsm8k(question, num_chains, call_generate):
    s = "Question: " + question + "\n"
    # s += call_generate(s + "Answer: " + prompt_lib[0], max_tokens=256,
    #     stop="Question", temperature=0)
    # return s

    comps = []
    for i in range(num_chains):
Liangsheng Yin's avatar
Liangsheng Yin committed
52
53
54
55
56
57
58
59
        comps.append(
            call_generate(
                s + "Answer: " + prompt_lib[i % num_chains],
                max_tokens=256,
                temperature=0.3,
                stop="Question",
            )
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
60
61
62
63
64

    s += "Answer: To answer this question, here are some possible solutions. "
    s += "After considering all of them, I will do a majority vote.\n\n"
    for i in range(num_chains):
        s += f"Solution {i+1}: " + comps[i].strip() + "\n\n"
Liangsheng Yin's avatar
Liangsheng Yin committed
65
    s += "\nBy considering the above solutions and doing a majority vote, I think the final answer (a single integer number) is "
Lianmin Zheng's avatar
Lianmin Zheng committed
66
67
68
69
70
71
72
73
74
75
76
77
    s += call_generate(s, max_tokens=16, temperature=0, stop=None)
    return s


def main(args):
    lines = read_jsonl(args.data_path)

    # Construct prompts
    k = args.num_shot

    questions = []
    labels = []
Liangsheng Yin's avatar
Liangsheng Yin committed
78
    for i in range(len(lines[: args.num_questions])):
Lianmin Zheng's avatar
Lianmin Zheng committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        questions.append(lines[i]["question"])
        labels.append(get_answer_value(lines[i]["answer"]))
    assert all(l != INVALID for l in labels)

    states = [None] * len(labels)

    # Select backend
    if args.backend == "lightllm":
        url = f"{args.host}:{args.port}/generate"
        call_generate = partial(call_generate_lightllm, url=url)
    elif args.backend == "vllm":
        url = f"{args.host}:{args.port}/generate"
        call_generate = partial(call_generate_vllm, url=url)
    elif args.backend == "srt-raw":
        url = f"{args.host}:{args.port}/generate"
        call_generate = partial(call_generate_srt_raw, url=url)
    elif args.backend == "guidance":
Liangsheng Yin's avatar
Liangsheng Yin committed
96
        from guidance import gen, models
Lianmin Zheng's avatar
Lianmin Zheng committed
97

Liangsheng Yin's avatar
Liangsheng Yin committed
98
99
100
101
102
        model = models.LlamaCpp(
            "/home/ubuntu/model_weights/Llama-2-7b-chat.gguf",
            n_gpu_layers=-1,
            n_ctx=4096,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
103
104

        def call_generate(prompt, temperature, max_tokens, stop):
Liangsheng Yin's avatar
Liangsheng Yin committed
105
106
107
108
109
110
111
112
113
114
            out = (
                model
                + prompt
                + gen(
                    name="answer",
                    max_tokens=max_tokens,
                    temperature=temperature,
                    stop=stop,
                )
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
115
116
            return out["answer"]

Liangsheng Yin's avatar
Liangsheng Yin committed
117
        # def multi_chain_gsm8k(question, num_chains, call_generate):
Lianmin Zheng's avatar
Lianmin Zheng committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        #    s = model + "Question: " + question + "\n"

        #    comps = []
        #    for i in range(num_chains):
        #        comps.append(call_generate(s + "Answer: " + prompt_lib[i % num_chains],
        #                     max_tokens=256, temperature=0.3, stop="Question"))

        #    s += "Answer: To answer this question, here are some possible solutions. "
        #    s += "After considering all of them, I will do a majority vote.\n\n"
        #    for i in range(num_chains):
        #        s += f"Solution {i+1}: " + comps[i].strip() + "\n\n"
        #    s += f"\nBy considering the above solutions and doing a majority vote, I think the final answer (a single integer number) is "
        #    return call_generate(s, max_tokens=16, temperature=0, stop=None)

    elif args.backend == "lmql":
        import lmql
Liangsheng Yin's avatar
Liangsheng Yin committed
134
135
136
137

        model = lmql.model(
            "meta-llama/Llama-2-7b-chat-hf", endpoint=f"{args.host}:{args.port}"
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

        @lmql.query(model=model)
        async def program(question):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < 257 and STOPS_AT(ANSWER, "Question")
            return ANSWER
            '''

        async def call_generate(prompt, temperature, max_tokens, stop):
            return await program(question=prompt, temperature=0)

    else:
        raise ValueError(f"Invalid backend: {args.backend}")

    # Run requests
    if args.backend != "lmql":
        # Use thread pool
        def get_one_answer(i):
Liangsheng Yin's avatar
Liangsheng Yin committed
156
            answer = multi_chain_gsm8k(questions[i], args.num_chains, call_generate)
Lianmin Zheng's avatar
Lianmin Zheng committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
            states[i] = answer

        tic = time.time()
        if args.parallel == 1:
            for i in range(len(questions)):
                get_one_answer(i)
        else:
            with ThreadPoolExecutor(args.parallel) as executor:
                executor.map(get_one_answer, list(range(len(questions))))
    else:
        # Use asyncio
        async def batched_call(batch_size):
            for i in range(0, len(questions), batch_size):
                tasks = []
Liangsheng Yin's avatar
Liangsheng Yin committed
171
172
173
174
175
176
177
178
179
                for q in questions[i : i + batch_size]:
                    tasks.append(
                        call_generate(
                            few_shot_examples + q,
                            temperature=0,
                            max_tokens=256,
                            stop="Question",
                        )
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
180
181
                rets = await asyncio.gather(*tasks)
                for j in range(len(rets)):
Liangsheng Yin's avatar
Liangsheng Yin committed
182
                    states[i + j] = get_answer_value(rets[j])
Lianmin Zheng's avatar
Lianmin Zheng committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

        tic = time.time()
        asyncio.run(batched_call(batch_size=args.parallel))
    latency = time.time() - tic

    preds = []
    for i in range(len(states)):
        preds.append(get_answer_value(states[i]))

    # Compute accuracy
    acc = np.mean(np.array(preds) == np.array(labels))
    invalid = np.mean(np.array(preds) == INVALID)
    print(f"Latency: {latency:.3f}")
    print(f"Invalid: {invalid:.3f}")
    print(f"Accuracy: {acc:.3f}")

    # Write results
    dump_state_text(f"tmp_output_{args.backend}.txt", states)

    with open(args.result_file, "a") as fout:
        value = {
            "task": "multi_chain_gsm8k",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "accuracy": round(acc, 3),
            "num_requests": args.num_questions,
            "other": {
                "num_questions": args.num_questions,
                "parallel": args.parallel,
Liangsheng Yin's avatar
Liangsheng Yin committed
213
            },
Lianmin Zheng's avatar
Lianmin Zheng committed
214
215
216
217
218
219
220
221
222
223
224
225
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--num-shot", type=int, default=0)
    parser.add_argument("--num-chains", type=int, default=5)
    parser.add_argument("--data-path", type=str, default="test.jsonl")
    parser.add_argument("--num-questions", type=int, default=50)
    args = add_common_other_args_and_parse(parser)
    main(args)