bench_other.py 7 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import argparse
import ast
import asyncio
from concurrent.futures import ThreadPoolExecutor
from functools import partial
import json
import re
import time

import numpy as np
from sglang.test.test_utils import add_common_other_args_and_parse, call_generate_lightllm, call_generate_vllm, call_generate_srt_raw
from sglang.utils import read_jsonl, dump_state_text


INVALID = -9999999


def get_answer_value(answer_str):
    answer_str = answer_str.replace(",", "")
    numbers = re.findall(r'\d+', answer_str)
    if len(numbers) < 1:
        return INVALID
    try:
        return ast.literal_eval(numbers[-1])
    except SyntaxError:
        return INVALID


prompt_lib = [
    "Let us think step by step.",
    "Approach this methodically. Let's dissect the problem into smaller, more manageable parts.",
    "It's important to proceed step by step, ensuring accuracy at each stage.",
    "Take a deep breath and break this down.",
    "A little bit of arithmetic and a logical approach will help us quickly arrive at the solution to this problem.",
    "I am extremely good at math.",
]


def multi_chain_gsm8k(question, num_chains, call_generate):
    s = "Question: " + question + "\n"
    # s += call_generate(s + "Answer: " + prompt_lib[0], max_tokens=256,
    #     stop="Question", temperature=0)
    # return s

    comps = []
    for i in range(num_chains):
        comps.append(call_generate(s + "Answer: " + prompt_lib[i % num_chains],
                     max_tokens=256, temperature=0.3, stop="Question"))

    s += "Answer: To answer this question, here are some possible solutions. "
    s += "After considering all of them, I will do a majority vote.\n\n"
    for i in range(num_chains):
        s += f"Solution {i+1}: " + comps[i].strip() + "\n\n"
    s += f"\nBy considering the above solutions and doing a majority vote, I think the final answer (a single integer number) is "
    s += call_generate(s, max_tokens=16, temperature=0, stop=None)
    return s


def main(args):
    lines = read_jsonl(args.data_path)

    # Construct prompts
    k = args.num_shot

    questions = []
    labels = []
    for i in range(len(lines[:args.num_questions])):
        questions.append(lines[i]["question"])
        labels.append(get_answer_value(lines[i]["answer"]))
    assert all(l != INVALID for l in labels)

    states = [None] * len(labels)

    # Select backend
    if args.backend == "lightllm":
        url = f"{args.host}:{args.port}/generate"
        call_generate = partial(call_generate_lightllm, url=url)
    elif args.backend == "vllm":
        url = f"{args.host}:{args.port}/generate"
        call_generate = partial(call_generate_vllm, url=url)
    elif args.backend == "srt-raw":
        url = f"{args.host}:{args.port}/generate"
        call_generate = partial(call_generate_srt_raw, url=url)
    elif args.backend == "guidance":
        from guidance import models, gen

        model = models.LlamaCpp("/home/ubuntu/model_weights/Llama-2-7b-chat.gguf", n_gpu_layers=-1, n_ctx=4096)

        def call_generate(prompt, temperature, max_tokens, stop):
            out = model + prompt + gen(name="answer",
                max_tokens=max_tokens, temperature=temperature, stop=stop)
            return out["answer"]

        #def multi_chain_gsm8k(question, num_chains, call_generate):
        #    s = model + "Question: " + question + "\n"

        #    comps = []
        #    for i in range(num_chains):
        #        comps.append(call_generate(s + "Answer: " + prompt_lib[i % num_chains],
        #                     max_tokens=256, temperature=0.3, stop="Question"))

        #    s += "Answer: To answer this question, here are some possible solutions. "
        #    s += "After considering all of them, I will do a majority vote.\n\n"
        #    for i in range(num_chains):
        #        s += f"Solution {i+1}: " + comps[i].strip() + "\n\n"
        #    s += f"\nBy considering the above solutions and doing a majority vote, I think the final answer (a single integer number) is "
        #    return call_generate(s, max_tokens=16, temperature=0, stop=None)

    elif args.backend == "lmql":
        import lmql
        model = lmql.model("meta-llama/Llama-2-7b-chat-hf",
           endpoint=f"{args.host}:{args.port}")

        @lmql.query(model=model)
        async def program(question):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < 257 and STOPS_AT(ANSWER, "Question")
            return ANSWER
            '''

        async def call_generate(prompt, temperature, max_tokens, stop):
            return await program(question=prompt, temperature=0)

    else:
        raise ValueError(f"Invalid backend: {args.backend}")

    # Run requests
    if args.backend != "lmql":
        # Use thread pool
        def get_one_answer(i):
            answer = multi_chain_gsm8k(questions[i], args.num_chains,
                call_generate)
            states[i] = answer

        tic = time.time()
        if args.parallel == 1:
            for i in range(len(questions)):
                get_one_answer(i)
        else:
            with ThreadPoolExecutor(args.parallel) as executor:
                executor.map(get_one_answer, list(range(len(questions))))
    else:
        # Use asyncio
        async def batched_call(batch_size):
            for i in range(0, len(questions), batch_size):
                tasks = []
                for q in questions[i:i+batch_size]:
                    tasks.append(call_generate(few_shot_examples + q,
                        temperature=0, max_tokens=256, stop="Question"))
                rets = await asyncio.gather(*tasks)
                for j in range(len(rets)):
                    states[i+j] = get_answer_value(rets[j])

        tic = time.time()
        asyncio.run(batched_call(batch_size=args.parallel))
    latency = time.time() - tic

    preds = []
    for i in range(len(states)):
        preds.append(get_answer_value(states[i]))

    # Compute accuracy
    acc = np.mean(np.array(preds) == np.array(labels))
    invalid = np.mean(np.array(preds) == INVALID)
    print(f"Latency: {latency:.3f}")
    print(f"Invalid: {invalid:.3f}")
    print(f"Accuracy: {acc:.3f}")

    # Write results
    dump_state_text(f"tmp_output_{args.backend}.txt", states)

    with open(args.result_file, "a") as fout:
        value = {
            "task": "multi_chain_gsm8k",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "accuracy": round(acc, 3),
            "num_requests": args.num_questions,
            "other": {
                "num_questions": args.num_questions,
                "parallel": args.parallel,
            }
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--num-shot", type=int, default=0)
    parser.add_argument("--num-chains", type=int, default=5)
    parser.add_argument("--data-path", type=str, default="test.jsonl")
    parser.add_argument("--num-questions", type=int, default=50)
    args = add_common_other_args_and_parse(parser)
    main(args)