bench_per_token_group_quant_fp8.py 5.71 KB
Newer Older
1
import itertools
2
from typing import Tuple
3
4
5
6
7
8

import torch
import triton
import triton.language as tl
from sgl_kernel import sgl_per_token_group_quant_fp8

9
from sglang.srt.utils import is_hip
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

is_hip_ = is_hip()
fp8_type_ = torch.float8_e4m3fnuz if is_hip_ else torch.float8_e4m3fn


@triton.jit
def _per_token_group_quant_fp8(
    # Pointers to inputs and output
    y_ptr,
    y_q_ptr,
    y_s_ptr,
    # Stride of input
    y_stride,
    # Collums of input
    N,
    # Avoid to divide zero
    eps,
    # Information for float8
    fp8_min,
    fp8_max,
    # Meta-parameters
    BLOCK: tl.constexpr,
):
    """A Triton-accelerated function to perform per-token-group quantization on a
    tensor.

    This function converts the tensor values into float8 values.
    """
    # Map the program id to the row of X and Y it should compute.
    g_id = tl.program_id(0)
    y_ptr += g_id * y_stride
    y_q_ptr += g_id * y_stride
    y_s_ptr += g_id

    cols = tl.arange(0, BLOCK)  # N <= BLOCK
    mask = cols < N

    y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
    # Quant
    _absmax = tl.maximum(tl.max(tl.abs(y)), eps)
    y_s = _absmax / fp8_max
    y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)

    tl.store(y_q_ptr + cols, y_q, mask=mask)
    tl.store(y_s_ptr, y_s)


def triton_per_token_group_quant_fp8(
    x: torch.Tensor,
    group_size: int,
    eps: float = 1e-10,
    dtype: torch.dtype = fp8_type_,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Function to perform per-token-group quantization on an input tensor `x`.

    It converts the tensor values into signed float8 values and returns the
    quantized tensor along with the scaling factor used for quantization.

    Args:
        x: The input tenosr with ndim >= 2.
        group_size: The group size used for quantization.
        eps: The minimum to avoid dividing zero.
        dtype: The dype of output tensor. Note that only `torch.float8_e4m3fn` is supported for now.

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: The quantized tensor and the scaling factor for quantization.
    """
    assert (
        x.shape[-1] % group_size == 0
    ), "the last dimension of `x` cannot be divisible by `group_size`"
    assert x.is_contiguous(), "`x` is not contiguous"

    finfo = torch.finfo(dtype)
    fp8_max = finfo.max

    fp8_min = -fp8_max

    x_q = torch.empty_like(x, device=x.device, dtype=dtype)
    M = x.numel() // group_size
    N = group_size
    x_s = torch.empty(
        x.shape[:-1] + (x.shape[-1] // group_size,),
        device=x.device,
        dtype=torch.float32,
    )

    BLOCK = triton.next_power_of_2(N)
    # heuristics for number of warps
    num_warps = min(max(BLOCK // 256, 1), 8)
    num_stages = 1
    _per_token_group_quant_fp8[(M,)](
        x,
        x_q,
        x_s,
        group_size,
        N,
        eps,
        fp8_min=fp8_min,
        fp8_max=fp8_max,
        BLOCK=BLOCK,
        num_warps=num_warps,
        num_stages=num_stages,
    )

    return x_q, x_s


def sglang_per_token_group_quant_fp8(
    x: torch.Tensor,
    group_size: int,
    eps: float = 1e-10,
    dtype: torch.dtype = fp8_type_,
):
    assert (
        x.shape[-1] % group_size == 0
    ), "the last dimension of `x` cannot be divisible by `group_size`"
    assert x.is_contiguous(), "`x` is not contiguous"

    finfo = torch.finfo(dtype)
    fp8_max = finfo.max

    fp8_min = -fp8_max

    x_q = torch.empty_like(x, device=x.device, dtype=dtype)
    M = x.numel() // group_size
    N = group_size
    x_s = torch.empty(
        x.shape[:-1] + (x.shape[-1] // group_size,),
        device=x.device,
        dtype=torch.float32,
    )

    sgl_per_token_group_quant_fp8(x, x_q, x_s, group_size, eps, fp8_min, fp8_max)

    return x_q, x_s


def calculate_diff(batch_size, seq_len, group_size):
    dtype = torch.float16
    device = torch.device("cuda")
    hidden_dim = group_size * 2

    x = torch.randn(batch_size, seq_len, hidden_dim, device=device, dtype=dtype)

    x_q_triton, x_s_triton = triton_per_token_group_quant_fp8(x.clone(), group_size)
    x_q_sglang, x_s_sglang = sglang_per_token_group_quant_fp8(x.clone(), group_size)

    if torch.allclose(
        x_q_triton.to(torch.float32), x_q_sglang.to(torch.float32), rtol=1e-3, atol=1e-5
    ) and torch.allclose(x_s_triton, x_s_sglang, rtol=1e-3, atol=1e-5):
        print("✅ All implementations match")
    else:
        print("❌ Implementations differ")


batch_size_range = [1, 2, 4, 8, 16, 32, 64]
seq_len_range = [64, 128, 256, 512, 1024, 2048]
group_size_range = [128]  # For DeepSeek V3/R1

configs = list(itertools.product(batch_size_range, seq_len_range, group_size_range))


@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=["batch_size", "seq_len", "group_size"],
        x_vals=configs,
        line_arg="provider",
        line_vals=["triton", "sglang"],
        line_names=["Triton", "SGL Kernel"],
        styles=[("blue", "-"), ("green", "-")],
        ylabel="us",
        plot_name="per-token-group-quant-fp8-performance",
        args={},
    )
)
def benchmark(batch_size, seq_len, group_size, provider):
    dtype = torch.bfloat16
    device = torch.device("cuda")
188
    hidden_dim = 7168
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

    x = torch.randn(batch_size, seq_len, hidden_dim, device=device, dtype=dtype)

    quantiles = [0.5, 0.2, 0.8]

    if provider == "triton":
        fn = lambda: triton_per_token_group_quant_fp8(x.clone(), group_size)
    elif provider == "sglang":
        fn = lambda: sglang_per_token_group_quant_fp8(x.clone(), group_size)

    ms, min_ms, max_ms = triton.testing.do_bench(fn, quantiles=quantiles)

    return 1000 * ms, 1000 * max_ms, 1000 * min_ms


if __name__ == "__main__":

    calculate_diff(batch_size=4, seq_len=128, group_size=64)

    benchmark.run(print_data=True)