Unverified Commit 55a7ec38 authored by Xiaoyu Zhang's avatar Xiaoyu Zhang Committed by GitHub
Browse files

use warp shuffle style reduce and flashinfer vectorize (#3628)

parent fe0673f1
......@@ -186,7 +186,7 @@ configs = list(itertools.product(batch_size_range, seq_len_range, group_size_ran
def benchmark(batch_size, seq_len, group_size, provider):
dtype = torch.bfloat16
device = torch.device("cuda")
hidden_dim = group_size * 2
hidden_dim = 7168
x = torch.randn(batch_size, seq_len, hidden_dim, device=device, dtype=dtype)
......
......@@ -2,17 +2,18 @@
#include <c10/util/Float8_e4m3fn.h>
#include <cmath>
#include <flashinfer/vec_dtypes.cuh>
#include "utils.h"
using FP8_TYPE = c10::Float8_e4m3fn;
__device__ __forceinline__ float GroupReduce(volatile float* smem, const int tid) {
smem[tid] = fmaxf(smem[tid], smem[tid + 8]);
if (tid < 4) smem[tid] = fmaxf(smem[tid], smem[tid + 4]);
if (tid < 2) smem[tid] = fmaxf(smem[tid], smem[tid + 2]);
if (tid < 1) smem[tid] = fmaxf(smem[tid], smem[tid + 1]);
return smem[0];
__device__ __forceinline__ float GroupReduce(float val, const int tid) {
val = fmaxf(val, __shfl_xor_sync(0xffff, val, 8));
val = fmaxf(val, __shfl_xor_sync(0xffff, val, 4));
val = fmaxf(val, __shfl_xor_sync(0xffff, val, 2));
val = fmaxf(val, __shfl_xor_sync(0xffff, val, 1));
return val;
}
template <typename T>
......@@ -21,54 +22,60 @@ __global__ void per_token_group_quant_fp8_kernel(const T* __restrict__ input, vo
const int num_groups, const float eps, const float fp8_min,
const float fp8_max) {
const int groups_per_block = 16;
const int local_group_id = threadIdx.x / 16;
const int lane_id = threadIdx.x % 16;
const int block_group_id = blockIdx.x * groups_per_block;
const int tid = threadIdx.x;
const int local_group_id = tid / 16; // Each 16 threads handle one group
const int local_tid = tid % 16; // Thread ID within the group
const int block_group_offset = (block_group_id + local_group_id) * group_size;
__shared__ float s_absmax[16][17]; // Use 17 instead of 16 to avoid bank conflicts
__shared__ float s_absmax[16];
// Local maximum value for each thread
float local_absmax = eps;
// Ensure this block doesn't process out-of-bounds groups
if (block_group_id + local_group_id < num_groups) {
// Calculate input/output pointers for current group
const T* group_input = input + (block_group_id + local_group_id) * group_size;
FP8_TYPE* group_output = static_cast<FP8_TYPE*>(output_q) + (block_group_id + local_group_id) * group_size;
float* scale_output = output_s + block_group_id + local_group_id;
const T* group_input = input + block_group_offset;
FP8_TYPE* group_output = static_cast<FP8_TYPE*>(output_q) + block_group_offset;
float* scale_output = output_s + block_group_id + local_group_id;
constexpr uint32_t vec_size = 16 / sizeof(T);
using vec_t = flashinfer::vec_t<T, vec_size>;
const int32_t num_vec_elems = group_size / vec_size;
// Calculate local maximum absolute value
for (int i = local_tid; i < group_size; i += 16) {
float val = static_cast<float>(group_input[i]);
for (int32_t i = lane_id; i < num_vec_elems; i += 16) {
vec_t input_vec;
input_vec.cast_load(group_input + i * vec_size);
#pragma unroll
for (uint32_t j = 0; j < vec_size; ++j) {
float val = static_cast<float>(input_vec[j]);
float abs_val = fabsf(val);
local_absmax = fmaxf(local_absmax, abs_val);
}
}
// Store in shared memory
s_absmax[local_group_id][local_tid] = local_absmax;
__syncthreads();
local_absmax = GroupReduce(local_absmax, lane_id);
// Perform reduction within each group
if (local_tid < 8) {
GroupReduce(&s_absmax[local_group_id][0], local_tid);
}
__syncthreads();
if (lane_id == 0) {
s_absmax[local_group_id] = local_absmax;
}
__syncthreads();
// Get the maximum value for this group
const float group_absmax = s_absmax[local_group_id][0];
const float y_s = group_absmax / fp8_max;
const float group_absmax = s_absmax[local_group_id];
const float y_s = group_absmax / fp8_max;
// Only the first thread in each group writes the scale
if (local_tid == 0) {
*scale_output = y_s;
}
if (lane_id == 0) {
*scale_output = y_s;
}
for (int32_t i = lane_id; i < num_vec_elems; i += 16) {
vec_t input_vec;
input_vec.cast_load(group_input + i * vec_size);
// Quantize the data
for (int i = local_tid; i < group_size; i += 16) {
float val = static_cast<float>(group_input[i]);
#pragma unroll
for (uint32_t j = 0; j < vec_size; ++j) {
float val = static_cast<float>(input_vec[j]);
float q_val = fminf(fmaxf(val / y_s, fp8_min), fp8_max);
group_output[i] = FP8_TYPE(q_val);
group_output[i * vec_size + j] = FP8_TYPE(q_val);
}
}
}
......@@ -83,9 +90,8 @@ void sgl_per_token_group_quant_fp8(torch::Tensor input, torch::Tensor output_q,
CHECK_EQ(input.numel() % group_size, 0);
// Each block processes 16 groups, adjust grid size accordingly
dim3 grid((num_groups + 15) / 16);
dim3 block(256); // Keep 256 threads, each 16 threads handle one group
dim3 block(256);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment