speculative_decoding.ipynb 7.42 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Speculative Decoding\n",
    "\n",
    "SGLang now provides an EAGLE-based speculative decoding option. The implementation aims to maximize speed and efficiency and is considered to be among the fastest in open-source LLM engines.\n",
    "\n",
11
12
    "**Note:** Currently, Speculative Decoding in SGLang does not support radix cache.\n",
    "\n",
13
14
    "### Performance Highlights\n",
    "\n",
15
16
17
18
    "- Official EAGLE code ([SafeAILab/EAGLE](https://github.com/SafeAILab/EAGLE)): ~200 tokens/s\n",
    "- Standard SGLang Decoding: ~156 tokens/s\n",
    "- EAGLE Decoding in SGLang: ~297 tokens/s\n",
    "- EAGLE Decoding in SGLang (w/ `torch.compile`): ~316 tokens/s\n",
19
20
21
22
23
24
25
26
27
28
    "\n",
    "All benchmarks below were run on a single H100."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## EAGLE Decoding\n",
    "\n",
29
    "To enable EAGLE-based speculative decoding, specify the draft model (`--speculative-draft-model-path`) and the relevant EAGLE parameters:"
30
31
32
33
34
35
36
37
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
38
39
40
41
42
43
44
45
    "from sglang.test.test_utils import is_in_ci\n",
    "\n",
    "if is_in_ci():\n",
    "    from patch import launch_server_cmd\n",
    "else:\n",
    "    from sglang.utils import launch_server_cmd\n",
    "\n",
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
46
    "\n",
47
    "server_process, port = launch_server_cmd(\n",
48
    "    \"\"\"\n",
49
    "python3 -m sglang.launch_server --model meta-llama/Llama-2-7b-chat-hf  --speculative-algorithm EAGLE \\\n",
50
    "    --speculative-draft-model-path lmsys/sglang-EAGLE-llama2-chat-7B --speculative-num-steps 5 \\\n",
51
    "    --speculative-eagle-topk 8 --speculative-num-draft-tokens 64\n",
52
53
54
    "\"\"\"\n",
    ")\n",
    "\n",
55
    "wait_for_server(f\"http://localhost:{port}\")"
56
57
58
59
60
61
62
63
64
65
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import openai\n",
    "\n",
66
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
    "\n",
    "print_highlight(f\"Response: {response}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EAGLE Decoding with `torch.compile`\n",
    "\n",
    "You can also enable `torch.compile` for further optimizations and optionally set `--cuda-graph-max-bs`:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
104
    "server_process, port = launch_server_cmd(\n",
105
    "    \"\"\"\n",
106
    "python3 -m sglang.launch_server --model meta-llama/Llama-2-7b-chat-hf  --speculative-algorithm EAGLE \\\n",
107
    "    --speculative-draft-model-path lmsys/sglang-EAGLE-llama2-chat-7B --speculative-num-steps 5 \\\n",
108
109
    "        --speculative-eagle-topk 8 --speculative-num-draft-tokens 64 --mem-fraction 0.6 \\\n",
    "            --enable-torch-compile --cuda-graph-max-bs 2\n",
110
111
112
    "\"\"\"\n",
    ")\n",
    "\n",
113
    "wait_for_server(f\"http://localhost:{port}\")"
114
115
116
117
118
119
120
121
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
122
123
124
125
126
127
128
129
130
131
132
    "import openai\n",
    "\n",
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
133
134
    ")\n",
    "\n",
135
    "print_highlight(f\"Response: {response}\")"
136
137
   ]
  },
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EAGLE Decoding via Frequency-Ranked Speculative Sampling\n",
    "\n",
    "By employing a truncated high-frequency token vocabulary in the draft model, Eagle speculative decoding reduces `lm_head` computational overhead while accelerating the pipeline without quality degradation. For more details, checkout [the paper](https://arxiv.org/pdf/arXiv:2502.14856).\n",
    "\n",
    "In our implementation, set `--speculative-token-map` to enable the optimization. You can get the high-frequency token in FR-Spec from [this model](https://huggingface.co/thunlp/LLaMA3-Instruct-8B-FR-Spec). Or you can obtain high-frequency token by directly downloading these token from [this repo](https://github.com/thunlp/FR-Spec/tree/main?tab=readme-ov-file#prepare-fr-spec-vocabulary-subset).\n",
    "\n",
    "Thanks for the contribution from [Weilin Zhao](https://github.com/https://github.com/Achazwl) and [Zhousx](https://github.com/Zhou-sx). "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sglang.test.test_utils import is_in_ci\n",
    "\n",
    "if is_in_ci():\n",
    "    from patch import launch_server_cmd\n",
    "else:\n",
    "    from sglang.utils import launch_server_cmd\n",
    "\n",
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
    "\n",
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3-8B-Instruct --speculative-algorithm EAGLE \\\n",
178
    "    --speculative-draft-model-path lmsys/sglang-EAGLE-LLaMA3-Instruct-8B --speculative-num-steps 5 \\\n",
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    "    --speculative-eagle-topk 8 --speculative-num-draft-tokens 64 --speculative-token-map thunlp/LLaMA3-Instruct-8B-FR-Spec/freq_32768.pt \\\n",
    "    --mem-fraction 0.7 --cuda-graph-max-bs 2 --dtype float16 \n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import openai\n",
    "\n",
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
    "\n",
    "print_highlight(f\"Response: {response}\")"
   ]
  },
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}