{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Speculative Decoding\n", "\n", "SGLang now provides an EAGLE-based speculative decoding option. The implementation aims to maximize speed and efficiency and is considered to be among the fastest in open-source LLM engines.\n", "\n", "**Note:** Currently, Speculative Decoding in SGLang does not support radix cache.\n", "\n", "### Performance Highlights\n", "\n", "- Official EAGLE code ([SafeAILab/EAGLE](https://github.com/SafeAILab/EAGLE)): ~200 tokens/s\n", "- Standard SGLang Decoding: ~156 tokens/s\n", "- EAGLE Decoding in SGLang: ~297 tokens/s\n", "- EAGLE Decoding in SGLang (w/ `torch.compile`): ~316 tokens/s\n", "\n", "All benchmarks below were run on a single H100." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## EAGLE Decoding\n", "\n", "To enable EAGLE-based speculative decoding, specify the draft model (`--speculative-draft-model-path`) and the relevant EAGLE parameters:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sglang.test.test_utils import is_in_ci\n", "\n", "if is_in_ci():\n", " from patch import launch_server_cmd\n", "else:\n", " from sglang.utils import launch_server_cmd\n", "\n", "from sglang.utils import wait_for_server, print_highlight, terminate_process\n", "\n", "server_process, port = launch_server_cmd(\n", " \"\"\"\n", "python3 -m sglang.launch_server --model meta-llama/Llama-2-7b-chat-hf --speculative-algorithm EAGLE \\\n", " --speculative-draft-model-path lmsys/sglang-EAGLE-llama2-chat-7B --speculative-num-steps 5 \\\n", " --speculative-eagle-topk 8 --speculative-num-draft-tokens 64\n", "\"\"\"\n", ")\n", "\n", "wait_for_server(f\"http://localhost:{port}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import openai\n", "\n", "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n", "\n", "response = client.chat.completions.create(\n", " model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n", " messages=[\n", " {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n", " ],\n", " temperature=0,\n", " max_tokens=64,\n", ")\n", "\n", "print_highlight(f\"Response: {response}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "terminate_process(server_process)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### EAGLE Decoding with `torch.compile`\n", "\n", "You can also enable `torch.compile` for further optimizations and optionally set `--cuda-graph-max-bs`:\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "server_process, port = launch_server_cmd(\n", " \"\"\"\n", "python3 -m sglang.launch_server --model meta-llama/Llama-2-7b-chat-hf --speculative-algorithm EAGLE \\\n", " --speculative-draft-model-path lmsys/sglang-EAGLE-llama2-chat-7B --speculative-num-steps 5 \\\n", " --speculative-eagle-topk 8 --speculative-num-draft-tokens 64 --mem-fraction 0.6 \\\n", " --enable-torch-compile --cuda-graph-max-bs 2\n", "\"\"\"\n", ")\n", "\n", "wait_for_server(f\"http://localhost:{port}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import openai\n", "\n", "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n", "\n", "response = client.chat.completions.create(\n", " model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n", " messages=[\n", " {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n", " ],\n", " temperature=0,\n", " max_tokens=64,\n", ")\n", "\n", "print_highlight(f\"Response: {response}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "terminate_process(server_process)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### EAGLE Decoding via Frequency-Ranked Speculative Sampling\n", "\n", "By employing a truncated high-frequency token vocabulary in the draft model, Eagle speculative decoding reduces `lm_head` computational overhead while accelerating the pipeline without quality degradation. For more details, checkout [the paper](https://arxiv.org/pdf/arXiv:2502.14856).\n", "\n", "In our implementation, set `--speculative-token-map` to enable the optimization. You can get the high-frequency token in FR-Spec from [this model](https://huggingface.co/thunlp/LLaMA3-Instruct-8B-FR-Spec). Or you can obtain high-frequency token by directly downloading these token from [this repo](https://github.com/thunlp/FR-Spec/tree/main?tab=readme-ov-file#prepare-fr-spec-vocabulary-subset).\n", "\n", "Thanks for the contribution from [Weilin Zhao](https://github.com/https://github.com/Achazwl) and [Zhousx](https://github.com/Zhou-sx). " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sglang.test.test_utils import is_in_ci\n", "\n", "if is_in_ci():\n", " from patch import launch_server_cmd\n", "else:\n", " from sglang.utils import launch_server_cmd\n", "\n", "from sglang.utils import wait_for_server, print_highlight, terminate_process\n", "\n", "server_process, port = launch_server_cmd(\n", " \"\"\"\n", "python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3-8B-Instruct --speculative-algorithm EAGLE \\\n", " --speculative-draft-model-path lmsys/sglang-EAGLE-LLaMA3-Instruct-8B --speculative-num-steps 5 \\\n", " --speculative-eagle-topk 8 --speculative-num-draft-tokens 64 --speculative-token-map thunlp/LLaMA3-Instruct-8B-FR-Spec/freq_32768.pt \\\n", " --mem-fraction 0.7 --cuda-graph-max-bs 2 --dtype float16 \n", "\"\"\"\n", ")\n", "\n", "wait_for_server(f\"http://localhost:{port}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import openai\n", "\n", "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n", "\n", "response = client.chat.completions.create(\n", " model=\"meta-llama/Meta-Llama-3-8B-Instruct\",\n", " messages=[\n", " {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n", " ],\n", " temperature=0,\n", " max_tokens=64,\n", ")\n", "\n", "print_highlight(f\"Response: {response}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "terminate_process(server_process)" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3" } }, "nbformat": 4, "nbformat_minor": 2 }