test_patch_torch.py 4.14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import traceback
import unittest
from typing import Dict, List

import torch
import torch.multiprocessing as mp

from sglang.srt.patch_torch import monkey_patch_torch_reductions


class TestReleaseMemoryOccupation(unittest.TestCase):
    def test_monkey_patch_torch_reductions(self):
        mp.set_start_method("spawn", force=True)

        for enable_patch in [False, True]:
            for params in [
                # Same visible devices
                dict(
                    sender_info=dict(
                        visible_devices=[0, 1],
                        tensor_device=1,
                    ),
                    receiver_info=dict(
                        visible_devices=[0, 1],
                        tensor_device=1,
                    ),
                ),
                # Different visible devices
                dict(
                    sender_info=dict(
                        visible_devices=[0, 1],
                        tensor_device=1,
                    ),
                    receiver_info=dict(
                        visible_devices=[1, 0],
                        # If enable patch, this should be fixed, and cuda:1 becomes cuda:0
                        tensor_device=0 if enable_patch else 1,
                    ),
                ),
            ]:
                with self.subTest(f"{enable_patch=} {params=}"):
                    self._test_monkey_patch_torch_reductions_core(
                        enable_patch=enable_patch, **params
                    )

    def _test_monkey_patch_torch_reductions_core(
        self,
        sender_info: Dict,
        receiver_info: Dict,
        enable_patch: bool,
    ):
        print(
            f'test_monkey_patch_torch_reductions_core {os.environ.get("CUDA_VISIBLE_DEVICES")=}'
        )
        cuda_visible_devices_list: List[int] = [
            int(x)
            for x in os.environ.get("CUDA_VISIBLE_DEVICES", "0,1,2,3,4,5,6,7").split(
                ","
            )
        ]

        processes = []
        output_reader, output_writer = mp.Pipe(duplex=False)
        queue = mp.Queue()
        for role, info in [
            ("sender", sender_info),
            ("receiver", receiver_info),
        ]:
            os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
                str(cuda_visible_devices_list[device])
                for device in info["visible_devices"]
            )
            p = mp.Process(
                target=_run_subprocess,
                kwargs=dict(
                    role=role,
                    queue=queue,
                    output_writer=output_writer,
                    tensor_device=info["tensor_device"],
                    enable_patch=enable_patch,
                ),
            )
            p.start()
            processes.append(p)

        for _ in range(len(processes)):
            self.assertTrue(
                output_reader.recv(), f"Subprocess has error, please see logs above."
            )

        for p in processes:
            p.join()


def _run_subprocess(
    role: str, queue: mp.Queue, output_writer, tensor_device: int, enable_patch: bool
):
    print(
        f'subprocess[{role}] start {os.environ.get("CUDA_VISIBLE_DEVICES")=}',
        flush=True,
    )

    if enable_patch:
        print(f"subprocess[{role}] execute monkey_patch_torch_reductions", flush=True)
        monkey_patch_torch_reductions()

    try:
        if role == "sender":
            tensor = torch.tensor([1.0, 2.0], device=f"cuda:{tensor_device}")
            print(f"sender queue.put {tensor=} {tensor.device=}")
            queue.put(tensor)
            assert queue.get() == "done"
        elif role == "receiver":
            tensor = queue.get()
            print(f"receiver queue.get {tensor=} {tensor.device=}")
            assert str(tensor.device) == f"cuda:{tensor_device}"
            queue.put("done")
        else:
            raise NotImplementedError

        execution_ok = True
    except Exception as e:
        print(f"subprocess[{role}] has error: {e}", flush=True)
        traceback.print_exc()
        execution_ok = False

    output_writer.send(execution_ok)
    output_writer.close()


if __name__ == "__main__":
    unittest.main()