structured_outputs.ipynb 26.2 KB
Newer Older
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
7
    "# Structured Outputs"
8
9
10
11
12
13
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
14
    "You can specify a JSON schema, [regular expression](https://en.wikipedia.org/wiki/Regular_expression) or [EBNF](https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form) to constrain the model output. The model output will be guaranteed to follow the given constraints. Only one constraint parameter (`json_schema`, `regex`, or `ebnf`) can be specified for a request.\n",
15
    "\n",
16
    "SGLang supports three grammar backends:\n",
17
    "\n",
18
19
    "- [Outlines](https://github.com/dottxt-ai/outlines): Supports JSON schema and regular expression constraints.\n",
    "- [XGrammar](https://github.com/mlc-ai/xgrammar)(default): Supports JSON schema, regular expression, and EBNF constraints.\n",
20
    "- [Llguidance](https://github.com/guidance-ai/llguidance): Supports JSON schema, regular expression, and EBNF constraints.\n",
21
    "\n",
22
    "We suggest using XGrammar for its better performance and utility. XGrammar currently uses the [GGML BNF format](https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md). For more details, see [XGrammar technical overview](https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar).\n",
23
    "\n",
24
    "To use Outlines, simply add `--grammar-backend outlines` when launching the server.\n",
25
    "To use llguidance, add `--grammar-backend llguidance`  when launching the server.\n",
26
    "If no backend is specified, XGrammar will be used as the default.\n",
27
28
    "\n",
    "For better output quality, **It's advisable to explicitly include instructions in the prompt to guide the model to generate the desired format.** For example, you can specify, 'Please generate the output in the following JSON format: ...'.\n"
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## OpenAI Compatible API"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import openai\n",
45
    "import os\n",
46
47
48
49
50
51
52
53
    "from sglang.test.test_utils import is_in_ci\n",
    "\n",
    "if is_in_ci():\n",
    "    from patch import launch_server_cmd\n",
    "else:\n",
    "    from sglang.utils import launch_server_cmd\n",
    "\n",
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
54
55
56
    "\n",
    "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
    "\n",
57
    "\n",
58
    "server_process, port = launch_server_cmd(\n",
59
    "    \"python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --host 0.0.0.0\"\n",
60
61
    ")\n",
    "\n",
62
63
    "wait_for_server(f\"http://localhost:{port}\")\n",
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")"
64
65
66
67
68
69
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    "### JSON\n",
    "\n",
    "you can directly define a JSON schema or use [Pydantic](https://docs.pydantic.dev/latest/) to define and validate the response."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Using Pydantic**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from pydantic import BaseModel, Field\n",
    "\n",
    "\n",
    "# Define the schema using Pydantic\n",
    "class CapitalInfo(BaseModel):\n",
    "    name: str = Field(..., pattern=r\"^\\w+$\", description=\"Name of the capital city\")\n",
    "    population: int = Field(..., description=\"Population of the capital city\")\n",
    "\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"user\",\n",
102
    "            \"content\": \"Please generate the information of the capital of France in the JSON format.\",\n",
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    "        },\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=128,\n",
    "    response_format={\n",
    "        \"type\": \"json_schema\",\n",
    "        \"json_schema\": {\n",
    "            \"name\": \"foo\",\n",
    "            # convert the pydantic model to json schema\n",
    "            \"schema\": CapitalInfo.model_json_schema(),\n",
    "        },\n",
    "    },\n",
    ")\n",
    "\n",
    "response_content = response.choices[0].message.content\n",
    "# validate the JSON response by the pydantic model\n",
    "capital_info = CapitalInfo.model_validate_json(response_content)\n",
    "print_highlight(f\"Validated response: {capital_info.model_dump_json()}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**JSON Schema Directly**\n"
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "\n",
    "json_schema = json.dumps(\n",
    "    {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"name\": {\"type\": \"string\", \"pattern\": \"^[\\\\w]+$\"},\n",
    "            \"population\": {\"type\": \"integer\"},\n",
    "        },\n",
    "        \"required\": [\"name\", \"population\"],\n",
    "    }\n",
    ")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": \"Give me the information of the capital of France in the JSON format.\",\n",
    "        },\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=128,\n",
    "    response_format={\n",
    "        \"type\": \"json_schema\",\n",
    "        \"json_schema\": {\"name\": \"foo\", \"schema\": json.loads(json_schema)},\n",
    "    },\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EBNF"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ebnf_grammar = \"\"\"\n",
    "root ::= city | description\n",
    "city ::= \"London\" | \"Paris\" | \"Berlin\" | \"Rome\"\n",
    "description ::= city \" is \" status\n",
    "status ::= \"the capital of \" country\n",
    "country ::= \"England\" | \"France\" | \"Germany\" | \"Italy\"\n",
    "\"\"\"\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"system\", \"content\": \"You are a helpful geography bot.\"},\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": \"Give me the information of the capital of France.\",\n",
    "        },\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=32,\n",
    "    extra_body={\"ebnf\": ebnf_grammar},\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Regular expression"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"What is the capital of France?\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=128,\n",
    "    extra_body={\"regex\": \"(Paris|London)\"},\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Structural Tag"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "tool_get_current_weather = {\n",
    "    \"type\": \"function\",\n",
    "    \"function\": {\n",
    "        \"name\": \"get_current_weather\",\n",
    "        \"description\": \"Get the current weather in a given location\",\n",
    "        \"parameters\": {\n",
    "            \"type\": \"object\",\n",
    "            \"properties\": {\n",
    "                \"city\": {\n",
    "                    \"type\": \"string\",\n",
    "                    \"description\": \"The city to find the weather for, e.g. 'San Francisco'\",\n",
    "                },\n",
    "                \"state\": {\n",
    "                    \"type\": \"string\",\n",
    "                    \"description\": \"the two-letter abbreviation for the state that the city is\"\n",
    "                    \" in, e.g. 'CA' which would mean 'California'\",\n",
    "                },\n",
    "                \"unit\": {\n",
    "                    \"type\": \"string\",\n",
    "                    \"description\": \"The unit to fetch the temperature in\",\n",
    "                    \"enum\": [\"celsius\", \"fahrenheit\"],\n",
    "                },\n",
    "            },\n",
    "            \"required\": [\"city\", \"state\", \"unit\"],\n",
    "        },\n",
    "    },\n",
    "}\n",
    "\n",
    "tool_get_current_date = {\n",
    "    \"type\": \"function\",\n",
    "    \"function\": {\n",
    "        \"name\": \"get_current_date\",\n",
    "        \"description\": \"Get the current date and time for a given timezone\",\n",
    "        \"parameters\": {\n",
    "            \"type\": \"object\",\n",
    "            \"properties\": {\n",
    "                \"timezone\": {\n",
    "                    \"type\": \"string\",\n",
    "                    \"description\": \"The timezone to fetch the current date and time for, e.g. 'America/New_York'\",\n",
    "                }\n",
    "            },\n",
    "            \"required\": [\"timezone\"],\n",
    "        },\n",
    "    },\n",
    "}\n",
    "\n",
    "schema_get_current_weather = tool_get_current_weather[\"function\"][\"parameters\"]\n",
    "schema_get_current_date = tool_get_current_date[\"function\"][\"parameters\"]\n",
    "\n",
    "\n",
    "def get_messages():\n",
    "    return [\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": f\"\"\"\n",
    "# Tool Instructions\n",
    "- Always execute python code in messages that you share.\n",
    "- When looking for real time information use relevant functions if available else fallback to brave_search\n",
    "You have access to the following functions:\n",
    "Use the function 'get_current_weather' to: Get the current weather in a given location\n",
    "{tool_get_current_weather[\"function\"]}\n",
    "Use the function 'get_current_date' to: Get the current date and time for a given timezone\n",
    "{tool_get_current_date[\"function\"]}\n",
    "If a you choose to call a function ONLY reply in the following format:\n",
    "<{{start_tag}}={{function_name}}>{{parameters}}{{end_tag}}\n",
    "where\n",
    "start_tag => `<function`\n",
    "parameters => a JSON dict with the function argument name as key and function argument value as value.\n",
    "end_tag => `</function>`\n",
    "Here is an example,\n",
    "<function=example_function_name>{{\"example_name\": \"example_value\"}}</function>\n",
    "Reminder:\n",
    "- Function calls MUST follow the specified format\n",
    "- Required parameters MUST be specified\n",
    "- Only call one function at a time\n",
    "- Put the entire function call reply on one line\n",
    "- Always add your sources when using search results to answer the user query\n",
    "You are a helpful assistant.\"\"\",\n",
    "        },\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": \"You are in New York. Please get the current date and time, and the weather.\",\n",
    "        },\n",
    "    ]\n",
    "\n",
    "\n",
    "messages = get_messages()\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=messages,\n",
    "    response_format={\n",
    "        \"type\": \"structural_tag\",\n",
    "        \"structures\": [\n",
    "            {\n",
    "                \"begin\": \"<function=get_current_weather>\",\n",
    "                \"schema\": schema_get_current_weather,\n",
    "                \"end\": \"</function>\",\n",
    "            },\n",
    "            {\n",
    "                \"begin\": \"<function=get_current_date>\",\n",
    "                \"schema\": schema_get_current_date,\n",
    "                \"end\": \"</function>\",\n",
    "            },\n",
    "        ],\n",
    "        \"triggers\": [\"<function=\"],\n",
    "    },\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
357
358
359
360
361
362
363
364
365
366
367
368
369
370
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Native API and SGLang Runtime (SRT)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### JSON"
   ]
  },
371
372
373
374
375
376
377
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Using Pydantic**"
   ]
  },
378
379
380
381
382
383
384
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\n",
385
386
387
388
389
390
391
392
    "import json\n",
    "from pydantic import BaseModel, Field\n",
    "\n",
    "\n",
    "# Define the schema using Pydantic\n",
    "class CapitalInfo(BaseModel):\n",
    "    name: str = Field(..., pattern=r\"^\\w+$\", description=\"Name of the capital city\")\n",
    "    population: int = Field(..., description=\"Population of the capital city\")\n",
393
    "\n",
394
395
396
    "\n",
    "# Make API request\n",
    "response = requests.post(\n",
397
    "    f\"http://localhost:{port}/generate\",\n",
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    "    json={\n",
    "        \"text\": \"Here is the information of the capital of France in the JSON format.\\n\",\n",
    "        \"sampling_params\": {\n",
    "            \"temperature\": 0,\n",
    "            \"max_new_tokens\": 64,\n",
    "            \"json_schema\": json.dumps(CapitalInfo.model_json_schema()),\n",
    "        },\n",
    "    },\n",
    ")\n",
    "print_highlight(response.json())\n",
    "\n",
    "\n",
    "response_data = json.loads(response.json()[\"text\"])\n",
    "# validate the response by the pydantic model\n",
    "capital_info = CapitalInfo.model_validate(response_data)\n",
    "print_highlight(f\"Validated response: {capital_info.model_dump_json()}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**JSON Schema Directly**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
429
430
431
432
433
434
435
436
437
438
439
440
441
    "json_schema = json.dumps(\n",
    "    {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"name\": {\"type\": \"string\", \"pattern\": \"^[\\\\w]+$\"},\n",
    "            \"population\": {\"type\": \"integer\"},\n",
    "        },\n",
    "        \"required\": [\"name\", \"population\"],\n",
    "    }\n",
    ")\n",
    "\n",
    "# JSON\n",
    "response = requests.post(\n",
442
    "    f\"http://localhost:{port}/generate\",\n",
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    "    json={\n",
    "        \"text\": \"Here is the information of the capital of France in the JSON format.\\n\",\n",
    "        \"sampling_params\": {\n",
    "            \"temperature\": 0,\n",
    "            \"max_new_tokens\": 64,\n",
    "            \"json_schema\": json_schema,\n",
    "        },\n",
    "    },\n",
    ")\n",
    "\n",
    "print_highlight(response.json())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EBNF"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = requests.post(\n",
470
    "    f\"http://localhost:{port}/generate\",\n",
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    "    json={\n",
    "        \"text\": \"Give me the information of the capital of France.\",\n",
    "        \"sampling_params\": {\n",
    "            \"max_new_tokens\": 128,\n",
    "            \"temperature\": 0,\n",
    "            \"n\": 3,\n",
    "            \"ebnf\": (\n",
    "                \"root ::= city | description\\n\"\n",
    "                'city ::= \"London\" | \"Paris\" | \"Berlin\" | \"Rome\"\\n'\n",
    "                'description ::= city \" is \" status\\n'\n",
    "                'status ::= \"the capital of \" country\\n'\n",
    "                'country ::= \"England\" | \"France\" | \"Germany\" | \"Italy\"'\n",
    "            ),\n",
    "        },\n",
    "        \"stream\": False,\n",
    "        \"return_logprob\": False,\n",
    "    },\n",
    ")\n",
    "\n",
    "print_highlight(response.json())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Regular expression"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = requests.post(\n",
507
    "    f\"http://localhost:{port}/generate\",\n",
508
509
510
511
512
513
514
515
516
517
518
519
    "    json={\n",
    "        \"text\": \"Paris is the capital of\",\n",
    "        \"sampling_params\": {\n",
    "            \"temperature\": 0,\n",
    "            \"max_new_tokens\": 64,\n",
    "            \"regex\": \"(France|England)\",\n",
    "        },\n",
    "    },\n",
    ")\n",
    "print_highlight(response.json())"
   ]
  },
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Structural Tag"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "# generate an answer\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"meta-llama/Meta-Llama-3.1-8B-Instruct\")\n",
    "\n",
    "text = tokenizer.apply_chat_template(\n",
    "    messages, tokenize=False, add_generation_prompt=True\n",
    ")\n",
    "payload = {\n",
    "    \"text\": text,\n",
    "    \"sampling_params\": {\n",
    "        \"structural_tag\": json.dumps(\n",
    "            {\n",
    "                \"type\": \"structural_tag\",\n",
    "                \"structures\": [\n",
    "                    {\n",
    "                        \"begin\": \"<function=get_current_weather>\",\n",
    "                        \"schema\": schema_get_current_weather,\n",
    "                        \"end\": \"</function>\",\n",
    "                    },\n",
    "                    {\n",
    "                        \"begin\": \"<function=get_current_date>\",\n",
    "                        \"schema\": schema_get_current_date,\n",
    "                        \"end\": \"</function>\",\n",
    "                    },\n",
    "                ],\n",
    "                \"triggers\": [\"<function=\"],\n",
    "            }\n",
    "        )\n",
    "    },\n",
    "}\n",
    "\n",
    "\n",
    "# Send POST request to the API endpoint\n",
    "response = requests.post(f\"http://localhost:{port}/generate\", json=payload)\n",
    "print_highlight(response.json())"
   ]
  },
571
572
573
574
575
576
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
577
    "terminate_process(server_process)"
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Offline Engine API"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import sglang as sgl\n",
    "\n",
595
    "llm = sgl.Engine(\n",
596
597
598
599
600
601
602
603
604
605
606
    "    model_path=\"meta-llama/Meta-Llama-3.1-8B-Instruct\", grammar_backend=\"xgrammar\"\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### JSON"
   ]
  },
607
608
609
610
611
612
613
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Using Pydantic**"
   ]
  },
614
615
616
617
618
619
620
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
    "from pydantic import BaseModel, Field\n",
    "\n",
    "\n",
    "prompts = [\n",
    "    \"Give me the information of the capital of China in the JSON format.\",\n",
    "    \"Give me the information of the capital of France in the JSON format.\",\n",
    "    \"Give me the information of the capital of Ireland in the JSON format.\",\n",
    "]\n",
    "\n",
    "\n",
    "# Define the schema using Pydantic\n",
    "class CapitalInfo(BaseModel):\n",
    "    name: str = Field(..., pattern=r\"^\\w+$\", description=\"Name of the capital city\")\n",
    "    population: int = Field(..., description=\"Population of the capital city\")\n",
    "\n",
    "\n",
    "sampling_params = {\n",
    "    \"temperature\": 0.1,\n",
    "    \"top_p\": 0.95,\n",
    "    \"json_schema\": json.dumps(CapitalInfo.model_json_schema()),\n",
    "}\n",
642
    "\n",
643
    "outputs = llm.generate(prompts, sampling_params)\n",
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
    "for prompt, output in zip(prompts, outputs):\n",
    "    print_highlight(\"===============================\")\n",
    "    print_highlight(f\"Prompt: {prompt}\")  # validate the output by the pydantic model\n",
    "    capital_info = CapitalInfo.model_validate_json(output[\"text\"])\n",
    "    print_highlight(f\"Validated output: {capital_info.model_dump_json()}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**JSON Schema Directly**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
    "prompts = [\n",
    "    \"Give me the information of the capital of China in the JSON format.\",\n",
    "    \"Give me the information of the capital of France in the JSON format.\",\n",
    "    \"Give me the information of the capital of Ireland in the JSON format.\",\n",
    "]\n",
    "\n",
    "json_schema = json.dumps(\n",
    "    {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"name\": {\"type\": \"string\", \"pattern\": \"^[\\\\w]+$\"},\n",
    "            \"population\": {\"type\": \"integer\"},\n",
    "        },\n",
    "        \"required\": [\"name\", \"population\"],\n",
    "    }\n",
    ")\n",
    "\n",
    "sampling_params = {\"temperature\": 0.1, \"top_p\": 0.95, \"json_schema\": json_schema}\n",
    "\n",
683
    "outputs = llm.generate(prompts, sampling_params)\n",
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
    "for prompt, output in zip(prompts, outputs):\n",
    "    print_highlight(\"===============================\")\n",
    "    print_highlight(f\"Prompt: {prompt}\\nGenerated text: {output['text']}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EBNF\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompts = [\n",
    "    \"Give me the information of the capital of France.\",\n",
    "    \"Give me the information of the capital of Germany.\",\n",
    "    \"Give me the information of the capital of Italy.\",\n",
    "]\n",
    "\n",
    "sampling_params = {\n",
    "    \"temperature\": 0.8,\n",
    "    \"top_p\": 0.95,\n",
    "    \"ebnf\": (\n",
    "        \"root ::= city | description\\n\"\n",
    "        'city ::= \"London\" | \"Paris\" | \"Berlin\" | \"Rome\"\\n'\n",
    "        'description ::= city \" is \" status\\n'\n",
    "        'status ::= \"the capital of \" country\\n'\n",
    "        'country ::= \"England\" | \"France\" | \"Germany\" | \"Italy\"'\n",
    "    ),\n",
    "}\n",
    "\n",
720
    "outputs = llm.generate(prompts, sampling_params)\n",
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
    "for prompt, output in zip(prompts, outputs):\n",
    "    print_highlight(\"===============================\")\n",
    "    print_highlight(f\"Prompt: {prompt}\\nGenerated text: {output['text']}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Regular expression"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompts = [\n",
    "    \"Please provide information about London as a major global city:\",\n",
    "    \"Please provide information about Paris as a major global city:\",\n",
    "]\n",
    "\n",
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95, \"regex\": \"(France|England)\"}\n",
    "\n",
746
    "outputs = llm.generate(prompts, sampling_params)\n",
747
748
749
750
751
    "for prompt, output in zip(prompts, outputs):\n",
    "    print_highlight(\"===============================\")\n",
    "    print_highlight(f\"Prompt: {prompt}\\nGenerated text: {output['text']}\")"
   ]
  },
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Structural Tag"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "text = tokenizer.apply_chat_template(\n",
    "    messages, tokenize=False, add_generation_prompt=True\n",
    ")\n",
    "prompts = [text]\n",
    "\n",
    "\n",
    "sampling_params = {\n",
    "    \"temperature\": 0.8,\n",
    "    \"top_p\": 0.95,\n",
    "    \"structural_tag\": json.dumps(\n",
    "        {\n",
    "            \"type\": \"structural_tag\",\n",
    "            \"structures\": [\n",
    "                {\n",
    "                    \"begin\": \"<function=get_current_weather>\",\n",
    "                    \"schema\": schema_get_current_weather,\n",
    "                    \"end\": \"</function>\",\n",
    "                },\n",
    "                {\n",
    "                    \"begin\": \"<function=get_current_date>\",\n",
    "                    \"schema\": schema_get_current_date,\n",
    "                    \"end\": \"</function>\",\n",
    "                },\n",
    "            ],\n",
    "            \"triggers\": [\"<function=\"],\n",
    "        }\n",
    "    ),\n",
    "}\n",
    "\n",
    "\n",
    "# Send POST request to the API endpoint\n",
    "outputs = llm.generate(prompts, sampling_params)\n",
    "for prompt, output in zip(prompts, outputs):\n",
    "    print_highlight(\"===============================\")\n",
    "    print_highlight(f\"Prompt: {prompt}\\nGenerated text: {output['text']}\")"
   ]
  },
802
803
804
805
806
807
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
808
    "llm.shutdown()"
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}