structured_outputs.ipynb 17.6 KB
Newer Older
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
7
    "# Structured Outputs"
8
9
10
11
12
13
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
14
    "You can specify a JSON schema, [regular expression](https://en.wikipedia.org/wiki/Regular_expression) or [EBNF](https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form) to constrain the model output. The model output will be guaranteed to follow the given constraints. Only one constraint parameter (`json_schema`, `regex`, or `ebnf`) can be specified for a request.\n",
15
    "\n",
16
    "SGLang supports two grammar backends:\n",
17
    "\n",
18
    "- [Outlines](https://github.com/dottxt-ai/outlines) (default): Supports JSON schema and regular expression constraints.\n",
19
    "- [XGrammar](https://github.com/mlc-ai/xgrammar): Supports JSON schema, regular expression, and EBNF constraints.\n",
20
    "\n",
21
    "We suggest using XGrammar for its better performance and utility. XGrammar currently uses the [GGML BNF format](https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md). For more details, see [XGrammar technical overview](https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar).\n",
22
    "\n",
23
24
25
    "To use Xgrammar, simply add `--grammar-backend` xgrammar when launching the server. If no backend is specified, Outlines will be used as the default.\n",
    "\n",
    "For better output quality, **It's advisable to explicitly include instructions in the prompt to guide the model to generate the desired format.** For example, you can specify, 'Please generate the output in the following JSON format: ...'.\n"
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## OpenAI Compatible API"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
    "import openai\n",
48
49
50
51
    "import os\n",
    "\n",
    "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
    "\n",
52
53
54
55
56
57
58
59
60
61
62
63
64
    "\n",
    "server_process = execute_shell_command(\n",
    "    \"python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --port 30000 --host 0.0.0.0 --grammar-backend xgrammar\"\n",
    ")\n",
    "\n",
    "wait_for_server(\"http://localhost:30000\")\n",
    "client = openai.Client(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    "### JSON\n",
    "\n",
    "you can directly define a JSON schema or use [Pydantic](https://docs.pydantic.dev/latest/) to define and validate the response."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Using Pydantic**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from pydantic import BaseModel, Field\n",
    "\n",
    "\n",
    "# Define the schema using Pydantic\n",
    "class CapitalInfo(BaseModel):\n",
    "    name: str = Field(..., pattern=r\"^\\w+$\", description=\"Name of the capital city\")\n",
    "    population: int = Field(..., description=\"Population of the capital city\")\n",
    "\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"user\",\n",
97
    "            \"content\": \"Please generate the information of the capital of France in the JSON format.\",\n",
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    "        },\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=128,\n",
    "    response_format={\n",
    "        \"type\": \"json_schema\",\n",
    "        \"json_schema\": {\n",
    "            \"name\": \"foo\",\n",
    "            # convert the pydantic model to json schema\n",
    "            \"schema\": CapitalInfo.model_json_schema(),\n",
    "        },\n",
    "    },\n",
    ")\n",
    "\n",
    "response_content = response.choices[0].message.content\n",
    "# validate the JSON response by the pydantic model\n",
    "capital_info = CapitalInfo.model_validate_json(response_content)\n",
    "print_highlight(f\"Validated response: {capital_info.model_dump_json()}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**JSON Schema Directly**\n"
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "\n",
    "json_schema = json.dumps(\n",
    "    {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"name\": {\"type\": \"string\", \"pattern\": \"^[\\\\w]+$\"},\n",
    "            \"population\": {\"type\": \"integer\"},\n",
    "        },\n",
    "        \"required\": [\"name\", \"population\"],\n",
    "    }\n",
    ")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": \"Give me the information of the capital of France in the JSON format.\",\n",
    "        },\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=128,\n",
    "    response_format={\n",
    "        \"type\": \"json_schema\",\n",
    "        \"json_schema\": {\"name\": \"foo\", \"schema\": json.loads(json_schema)},\n",
    "    },\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EBNF"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ebnf_grammar = \"\"\"\n",
    "root ::= city | description\n",
    "city ::= \"London\" | \"Paris\" | \"Berlin\" | \"Rome\"\n",
    "description ::= city \" is \" status\n",
    "status ::= \"the capital of \" country\n",
    "country ::= \"England\" | \"France\" | \"Germany\" | \"Italy\"\n",
    "\"\"\"\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"system\", \"content\": \"You are a helpful geography bot.\"},\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": \"Give me the information of the capital of France.\",\n",
    "        },\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=32,\n",
    "    extra_body={\"ebnf\": ebnf_grammar},\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Regular expression"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"What is the capital of France?\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=128,\n",
    "    extra_body={\"regex\": \"(Paris|London)\"},\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Native API and SGLang Runtime (SRT)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### JSON"
   ]
  },
241
242
243
244
245
246
247
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Using Pydantic**"
   ]
  },
248
249
250
251
252
253
254
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\n",
255
256
257
258
259
260
261
262
    "import json\n",
    "from pydantic import BaseModel, Field\n",
    "\n",
    "\n",
    "# Define the schema using Pydantic\n",
    "class CapitalInfo(BaseModel):\n",
    "    name: str = Field(..., pattern=r\"^\\w+$\", description=\"Name of the capital city\")\n",
    "    population: int = Field(..., description=\"Population of the capital city\")\n",
263
    "\n",
264
265
266
    "\n",
    "# Make API request\n",
    "response = requests.post(\n",
267
    "    \"http://localhost:30000/generate\",\n",
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    "    json={\n",
    "        \"text\": \"Here is the information of the capital of France in the JSON format.\\n\",\n",
    "        \"sampling_params\": {\n",
    "            \"temperature\": 0,\n",
    "            \"max_new_tokens\": 64,\n",
    "            \"json_schema\": json.dumps(CapitalInfo.model_json_schema()),\n",
    "        },\n",
    "    },\n",
    ")\n",
    "print_highlight(response.json())\n",
    "\n",
    "\n",
    "response_data = json.loads(response.json()[\"text\"])\n",
    "# validate the response by the pydantic model\n",
    "capital_info = CapitalInfo.model_validate(response_data)\n",
    "print_highlight(f\"Validated response: {capital_info.model_dump_json()}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**JSON Schema Directly**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
299
300
301
302
303
304
305
306
307
308
309
310
311
    "json_schema = json.dumps(\n",
    "    {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"name\": {\"type\": \"string\", \"pattern\": \"^[\\\\w]+$\"},\n",
    "            \"population\": {\"type\": \"integer\"},\n",
    "        },\n",
    "        \"required\": [\"name\", \"population\"],\n",
    "    }\n",
    ")\n",
    "\n",
    "# JSON\n",
    "response = requests.post(\n",
312
    "    \"http://localhost:30000/generate\",\n",
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    "    json={\n",
    "        \"text\": \"Here is the information of the capital of France in the JSON format.\\n\",\n",
    "        \"sampling_params\": {\n",
    "            \"temperature\": 0,\n",
    "            \"max_new_tokens\": 64,\n",
    "            \"json_schema\": json_schema,\n",
    "        },\n",
    "    },\n",
    ")\n",
    "\n",
    "print_highlight(response.json())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EBNF"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\n",
    "\n",
    "response = requests.post(\n",
342
    "    \"http://localhost:30000/generate\",\n",
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    "    json={\n",
    "        \"text\": \"Give me the information of the capital of France.\",\n",
    "        \"sampling_params\": {\n",
    "            \"max_new_tokens\": 128,\n",
    "            \"temperature\": 0,\n",
    "            \"n\": 3,\n",
    "            \"ebnf\": (\n",
    "                \"root ::= city | description\\n\"\n",
    "                'city ::= \"London\" | \"Paris\" | \"Berlin\" | \"Rome\"\\n'\n",
    "                'description ::= city \" is \" status\\n'\n",
    "                'status ::= \"the capital of \" country\\n'\n",
    "                'country ::= \"England\" | \"France\" | \"Germany\" | \"Italy\"'\n",
    "            ),\n",
    "        },\n",
    "        \"stream\": False,\n",
    "        \"return_logprob\": False,\n",
    "    },\n",
    ")\n",
    "\n",
    "print_highlight(response.json())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Regular expression"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = requests.post(\n",
379
    "    \"http://localhost:30000/generate\",\n",
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    "    json={\n",
    "        \"text\": \"Paris is the capital of\",\n",
    "        \"sampling_params\": {\n",
    "            \"temperature\": 0,\n",
    "            \"max_new_tokens\": 64,\n",
    "            \"regex\": \"(France|England)\",\n",
    "        },\n",
    "    },\n",
    ")\n",
    "print_highlight(response.json())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Offline Engine API"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import sglang as sgl\n",
    "\n",
416
    "llm = sgl.Engine(\n",
417
418
419
420
421
422
423
424
425
426
427
    "    model_path=\"meta-llama/Meta-Llama-3.1-8B-Instruct\", grammar_backend=\"xgrammar\"\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### JSON"
   ]
  },
428
429
430
431
432
433
434
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Using Pydantic**"
   ]
  },
435
436
437
438
439
440
441
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
    "from pydantic import BaseModel, Field\n",
    "\n",
    "\n",
    "prompts = [\n",
    "    \"Give me the information of the capital of China in the JSON format.\",\n",
    "    \"Give me the information of the capital of France in the JSON format.\",\n",
    "    \"Give me the information of the capital of Ireland in the JSON format.\",\n",
    "]\n",
    "\n",
    "\n",
    "# Define the schema using Pydantic\n",
    "class CapitalInfo(BaseModel):\n",
    "    name: str = Field(..., pattern=r\"^\\w+$\", description=\"Name of the capital city\")\n",
    "    population: int = Field(..., description=\"Population of the capital city\")\n",
    "\n",
    "\n",
    "sampling_params = {\n",
    "    \"temperature\": 0.1,\n",
    "    \"top_p\": 0.95,\n",
    "    \"json_schema\": json.dumps(CapitalInfo.model_json_schema()),\n",
    "}\n",
463
    "\n",
464
    "outputs = llm.generate(prompts, sampling_params)\n",
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    "for prompt, output in zip(prompts, outputs):\n",
    "    print_highlight(\"===============================\")\n",
    "    print_highlight(f\"Prompt: {prompt}\")  # validate the output by the pydantic model\n",
    "    capital_info = CapitalInfo.model_validate_json(output[\"text\"])\n",
    "    print_highlight(f\"Validated output: {capital_info.model_dump_json()}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**JSON Schema Directly**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
    "prompts = [\n",
    "    \"Give me the information of the capital of China in the JSON format.\",\n",
    "    \"Give me the information of the capital of France in the JSON format.\",\n",
    "    \"Give me the information of the capital of Ireland in the JSON format.\",\n",
    "]\n",
    "\n",
    "json_schema = json.dumps(\n",
    "    {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"name\": {\"type\": \"string\", \"pattern\": \"^[\\\\w]+$\"},\n",
    "            \"population\": {\"type\": \"integer\"},\n",
    "        },\n",
    "        \"required\": [\"name\", \"population\"],\n",
    "    }\n",
    ")\n",
    "\n",
    "sampling_params = {\"temperature\": 0.1, \"top_p\": 0.95, \"json_schema\": json_schema}\n",
    "\n",
504
    "outputs = llm.generate(prompts, sampling_params)\n",
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    "for prompt, output in zip(prompts, outputs):\n",
    "    print_highlight(\"===============================\")\n",
    "    print_highlight(f\"Prompt: {prompt}\\nGenerated text: {output['text']}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EBNF\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompts = [\n",
    "    \"Give me the information of the capital of France.\",\n",
    "    \"Give me the information of the capital of Germany.\",\n",
    "    \"Give me the information of the capital of Italy.\",\n",
    "]\n",
    "\n",
    "sampling_params = {\n",
    "    \"temperature\": 0.8,\n",
    "    \"top_p\": 0.95,\n",
    "    \"ebnf\": (\n",
    "        \"root ::= city | description\\n\"\n",
    "        'city ::= \"London\" | \"Paris\" | \"Berlin\" | \"Rome\"\\n'\n",
    "        'description ::= city \" is \" status\\n'\n",
    "        'status ::= \"the capital of \" country\\n'\n",
    "        'country ::= \"England\" | \"France\" | \"Germany\" | \"Italy\"'\n",
    "    ),\n",
    "}\n",
    "\n",
541
    "outputs = llm.generate(prompts, sampling_params)\n",
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    "for prompt, output in zip(prompts, outputs):\n",
    "    print_highlight(\"===============================\")\n",
    "    print_highlight(f\"Prompt: {prompt}\\nGenerated text: {output['text']}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Regular expression"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompts = [\n",
    "    \"Please provide information about London as a major global city:\",\n",
    "    \"Please provide information about Paris as a major global city:\",\n",
    "]\n",
    "\n",
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95, \"regex\": \"(France|England)\"}\n",
    "\n",
567
    "outputs = llm.generate(prompts, sampling_params)\n",
568
569
570
571
572
573
574
575
576
577
578
    "for prompt, output in zip(prompts, outputs):\n",
    "    print_highlight(\"===============================\")\n",
    "    print_highlight(f\"Prompt: {prompt}\\nGenerated text: {output['text']}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
579
    "llm.shutdown()"
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}