test_vlm_accuracy.py 9.57 KB
Newer Older
1
2
3
4
5
"""
"""

import unittest
from io import BytesIO
6
from typing import List, Optional
7
8
9
10
11
12

import numpy as np
import requests
import torch
import torch.nn.functional as F
from PIL import Image
13
14
15
16
17
18
19
from transformers import (
    AutoModel,
    AutoProcessor,
    AutoTokenizer,
    Gemma3ForConditionalGeneration,
    Qwen2_5_VLForConditionalGeneration,
)
20

21
from sglang import Engine
22
23
from sglang.srt.configs.model_config import ModelConfig
from sglang.srt.conversation import generate_chat_conv
24
from sglang.srt.entrypoints.openai.protocol import ChatCompletionRequest
25
26
27
28
from sglang.srt.managers.mm_utils import embed_mm_inputs, init_embedding_cache
from sglang.srt.managers.multimodal_processors.base_processor import (
    BaseMultimodalProcessor,
)
Mick's avatar
Mick committed
29
30
31
32
33
from sglang.srt.managers.schedule_batch import (
    Modality,
    MultimodalDataItem,
    MultimodalInputs,
)
34
35
36
37
38
39
40
41
42
43
from sglang.srt.model_executor.model_runner import ModelRunner
from sglang.srt.server_args import ServerArgs


# Test the logits output between HF and SGLang
class VisionLLMLogitsBase(unittest.IsolatedAsyncioTestCase):
    @classmethod
    def setUpClass(cls):
        cls.image_url = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
        cls.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
44
45
46
        cls.model_path = ""
        cls.chat_template = ""
        cls.processor = ""
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        response = requests.get(cls.image_url)
        cls.main_image = Image.open(BytesIO(response.content))

    def compare_outputs(self, sglang_output: torch.Tensor, hf_output: torch.Tensor):
        # Convert to float32 for numerical stability if needed
        hf = hf_output.float()
        sg = sglang_output.float()

        # Basic shape and dtype comparison
        print("\n=== Basic Properties ===")
        print(f"Shapes match: {hf.shape == sg.shape}")
        print(f"HF shape: {hf.shape}, SGLang shape: {sg.shape}")
        print(f"HF dtype: {hf.dtype}, SGLang dtype: {sg.dtype}")

        # Move tensors to CPU for numpy operations
        hf_np = hf.cpu().numpy()
        sg_np = sg.cpu().numpy()

        # Statistical metrics
        print("\n=== Statistical Metrics ===")
        print(f"Mean absolute difference: {torch.mean(torch.abs(hf - sg)).item():.6f}")
        print(f"Max absolute difference: {torch.max(torch.abs(hf - sg)).item():.6f}")
        print(f"Mean squared error: {torch.mean((hf - sg) ** 2).item():.6f}")
        print(
            f"Root mean squared error: {torch.sqrt(torch.mean((hf - sg) ** 2)).item():.6f}"
        )

        # Cosine similarity (across feature dimension)
        cos_sim = F.cosine_similarity(hf, sg)
        print(f"Mean cosine similarity: {torch.mean(cos_sim).item():.6f}")
        print(f"Min cosine similarity: {torch.min(cos_sim).item():.6f}")

        # Find largest absolute differences
        print("\n=== Largest Absolute Differences ===")
        diffs = torch.abs(hf - sg)
        flat_diffs = diffs.flatten()

        # Get indices of top 10 differences
        top_k = 10
        top_values, top_flat_indices = torch.topk(flat_diffs, top_k)

        # Convert flat indices to multidimensional indices
        top_indices = np.unravel_index(top_flat_indices.cpu().numpy(), diffs.shape)

        print(f"\nTop {top_k} largest absolute differences:")
        print(
            "Index".ljust(30)
            + "Difference".ljust(15)
            + "HF Value".ljust(15)
            + "SGLang Value"
        )
        print("-" * 75)

        for i in range(top_k):
            # Get the index tuple for this difference
            idx = tuple(dim[i] for dim in top_indices)
        diff_val = top_values[i].item()
        hf_val = hf[idx].item()
        sg_val = sg[idx].item()

        # Format the index tuple and values
        idx_str = str(idx)
        print(f"{idx_str:<30}{diff_val:<15.6f}{hf_val:<15.6f}{sg_val:.6f}")

        np.testing.assert_allclose(hf_np, sg_np)

113
    def get_completion_request(self) -> ChatCompletionRequest:
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        json_str = f"""
        {{
  "model": "{self.model_path}",
  "messages": [
    {{
      "role": "user",
      "content": [
        {{
          "type": "image_url",
          "image_url": {{
            "url": "{self.image_url}"
          }}
        }},
        {{
          "type": "text",
129
          "text": "What's in this picture?"
130
131
132
133
134
135
136
        }}
      ]
    }}
  ]
}}
        """

137
        return ChatCompletionRequest.model_validate_json(json_str)
138

139
140
141
    def get_processor_output(self, req: Optional[ChatCompletionRequest] = None):
        if req is None:
            req = self.get_completion_request()
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        conv = generate_chat_conv(req, template_name=self.chat_template)
        text = conv.get_prompt()

        # Process inputs using processor
        # FIXME: the formal arguments may differ
        inputs = self.processor(
            text=[text],
            images=[self.main_image],
            return_tensors="pt",
        ).to(self.device)

        return inputs

    def get_sglang_model(self):
Mick's avatar
Mick committed
156
        self.model_runner = ModelRunner(
157
158
159
160
161
            model_config=ModelConfig(self.model_path, model_override_args="{}"),
            mem_fraction_static=0.8,
            gpu_id=0,
            tp_rank=0,
            tp_size=1,
162
163
            pp_rank=0,
            pp_size=1,
164
165
166
167
168
169
            nccl_port=12435,
            server_args=ServerArgs(
                model_path=self.model_path,
                disable_cuda_graph=True,
            ),
        )
Mick's avatar
Mick committed
170
        return self.model_runner.model
171
172


173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# TODO: MiniCPMV is not compatible with transformers==4.52.3, temporarily disabled
# class TestMiniCPMVLogits(VisionLLMLogitsBase):
#     @classmethod
#     def setUpClass(cls):
#         super().setUpClass()
#         cls.model_path = "openbmb/MiniCPM-V-2_6"
#         cls.tokenizer = AutoTokenizer.from_pretrained(
#             cls.model_path, trust_remote_code=True
#         )
#         cls.processor = AutoProcessor.from_pretrained(
#             cls.model_path, trust_remote_code=True
#         )
#         cls.chat_template = "minicpmv"
#
#         cls.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#         cls.hf_model = (
#             AutoModel.from_pretrained(
#                 cls.model_path, torch_dtype=torch.bfloat16, trust_remote_code=True
#             )
#             .eval()
#             .to(cls.device)
#         )
#         init_embedding_cache(0)
#
#     async def test_vlm_embedding_output(self):
#         """
#         Compares the embedding output of vlm
#         """
#         inputs = self.get_processor_output()
#
#         with torch.no_grad():
#             # hf
#             model_inputs = {
#                 "input_ids": inputs.input_ids,
#                 "image_bound": inputs.image_bound,
#                 "pixel_values": inputs.pixel_values,
#                 "tgt_sizes": inputs.tgt_sizes,
#             }
#             (hf_output, _) = self.hf_model.get_vllm_embedding(
#                 model_inputs,
#             )
#             hf_output = hf_output.squeeze(0)
#
#             # sglang
#             model = self.get_sglang_model()
#             input_ids = inputs["input_ids"].to(self.device).flatten()
#
#             pixel_values = inputs["pixel_values"]
#             tgt_sizes = inputs["tgt_sizes"]
#             pixel_values_flat: List[torch.Tensor] = []
#             tgt_sizes_flat: List[torch.Tensor] = []
#             for pixel_b, tgt_b in zip(pixel_values, tgt_sizes):
#                 # per image
#                 if len(pixel_b) != len(tgt_b):
#                     raise ValueError(
#                         "Inconsistent N lengths, found: "
#                         f"{len(pixel_b)} vs {len(tgt_b)}"
#                     )
#                 for pixel_n, tgt_n in zip(pixel_b, tgt_b):
#                     pixel_values_flat += [pixel_n]
#                     tgt_sizes_flat += [tgt_n]
#
#             im_start_id, im_end_id = (
#                 self.tokenizer.im_start_id,
#                 self.tokenizer.im_end_id,
#             )
#             slice_start_id, slice_end_id = (
#                 self.tokenizer.slice_start_id,
#                 self.tokenizer.slice_end_id,
#             )
#
#             image_offsets = BaseMultimodalProcessor.get_mm_items_offset_by_pair(
#                 input_ids=input_ids, mm_start_id=im_start_id, mm_end_id=im_end_id
#             )
#             slice_offsets = BaseMultimodalProcessor.get_mm_items_offset_by_pair(
#                 input_ids=input_ids, mm_start_id=slice_start_id, mm_end_id=slice_end_id
#             )
#             image_offsets.extend(slice_offsets)
#             image_offsets = sorted(image_offsets)
#
#             sglang_output = embed_mm_inputs(
#                 mm_inputs_list=[
#                     MultimodalInputs(
#                         mm_items=[
#                             MultimodalDataItem(
#                                 pixel_values=pixel_values_flat,
#                                 image_offsets=image_offsets,
#                                 tgt_size=tgt_sizes_flat,
#                                 modality=Modality.IMAGE,
#                                 pad_value=self.processor.tokenizer.unk_token_id,
#                             )
#                         ]
#                     ),
#                 ],
#                 extend_prefix_lens=[0],
#                 extend_seq_lens=[input_ids.shape[0]],
#                 input_ids=input_ids,
#                 input_embedding=model.get_input_embeddings(),
#                 image_data_embedding_func=model.get_image_feature,
#                 placeholder_tokens={
#                     Modality.IMAGE: self.processor.tokenizer.unk_token_id,
#                 },
#             )
#
#         self.compare_outputs(sglang_output, hf_output)