"torchvision/vscode:/vscode.git/clone" did not exist on "a370e79eb71a5120c7b8c58101ad326764167326"
http_server.py 51.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
The entry point of inference server. (SRT = SGLang Runtime)

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
17
This file implements HTTP APIs for the inference engine via fastapi.
18
19
20
21
"""

import asyncio
import dataclasses
22
import json
23
24
25
import logging
import multiprocessing as multiprocessing
import os
26
import tempfile
27
28
29
import threading
import time
from http import HTTPStatus
30
from typing import Any, AsyncIterator, Callable, Dict, List, Optional, Union
31

32
33
from sglang.srt.tracing.trace import process_tracing_init, trace_set_thread_info

34
35
36
# Fix a bug of Python threading
setattr(threading, "_register_atexit", lambda *args, **kwargs: None)

37
from contextlib import asynccontextmanager
38
from typing import AsyncGenerator
39
40

import numpy as np
41
42
43
44
import orjson
import requests
import uvicorn
import uvloop
45
from fastapi import Depends, FastAPI, HTTPException, Request, UploadFile
46
from fastapi.exceptions import RequestValidationError
47
48
49
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import ORJSONResponse, Response, StreamingResponse

50
from sglang.srt.disaggregation.utils import FAKE_BOOTSTRAP_HOST, DisaggregationMode
51
from sglang.srt.entrypoints.engine import _launch_subprocesses
52
53
54
55
from sglang.srt.entrypoints.openai.protocol import (
    ChatCompletionRequest,
    CompletionRequest,
    EmbeddingRequest,
56
    ErrorResponse,
57
58
    ModelCard,
    ModelList,
59
    ResponsesRequest,
60
61
62
63
64
65
66
67
    ScoringRequest,
    V1RerankReqInput,
)
from sglang.srt.entrypoints.openai.serving_chat import OpenAIServingChat
from sglang.srt.entrypoints.openai.serving_completions import OpenAIServingCompletion
from sglang.srt.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
from sglang.srt.entrypoints.openai.serving_rerank import OpenAIServingRerank
from sglang.srt.entrypoints.openai.serving_score import OpenAIServingScore
68
from sglang.srt.function_call.function_call_parser import FunctionCallParser
69
from sglang.srt.managers.io_struct import (
Lianmin Zheng's avatar
Lianmin Zheng committed
70
    AbortReq,
71
72
    CloseSessionReqInput,
    ConfigureLoggingReq,
73
    DestroyWeightsUpdateGroupReqInput,
74
75
76
    EmbeddingReqInput,
    GenerateReqInput,
    GetWeightsByNameReqInput,
77
    InitWeightsSendGroupForRemoteInstanceReqInput,
78
    InitWeightsUpdateGroupReqInput,
79
    LoadLoRAAdapterReqInput,
80
    OpenSessionReqInput,
81
    ParseFunctionCallReq,
82
    ProfileReqInput,
83
84
    ReleaseMemoryOccupationReqInput,
    ResumeMemoryOccupationReqInput,
85
    SendWeightsToRemoteInstanceReqInput,
Xihuai Wang's avatar
Xihuai Wang committed
86
    SeparateReasoningReqInput,
87
    SetInternalStateReq,
88
    SlowDownReqInput,
89
    UnloadLoRAAdapterReqInput,
90
91
    UpdateWeightFromDiskReqInput,
    UpdateWeightsFromDistributedReqInput,
92
    UpdateWeightsFromTensorReqInput,
93
    UpdateWeightVersionReqInput,
94
    VertexGenerateReqInput,
95
)
96
from sglang.srt.managers.multi_tokenizer_mixin import (
97
    MultiTokenizerRouter,
98
    TokenizerWorker,
99
    get_main_process_id,
100
    monkey_patch_uvicorn_multiprocessing,
101
102
103
    read_from_shared_memory,
    write_data_for_multi_tokenizer,
)
104
from sglang.srt.managers.template_manager import TemplateManager
105
from sglang.srt.managers.tokenizer_manager import ServerStatus, TokenizerManager
106
from sglang.srt.metrics.func_timer import enable_func_timer
107
from sglang.srt.parser.reasoning_parser import ReasoningParser
108
from sglang.srt.server_args import PortArgs, ServerArgs
109
110
111
112
from sglang.srt.utils import (
    add_api_key_middleware,
    add_prometheus_middleware,
    delete_directory,
113
    get_bool_env_var,
114
115
116
    kill_process_tree,
    set_uvicorn_logging_configs,
)
117
from sglang.srt.warmup import execute_warmups
118
119
120
121
122
123
from sglang.utils import get_exception_traceback
from sglang.version import __version__

logger = logging.getLogger(__name__)
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())

124
125
HEALTH_CHECK_TIMEOUT = int(os.getenv("SGLANG_HEALTH_CHECK_TIMEOUT", 20))

126
127
128
129

# Store global states
@dataclasses.dataclass
class _GlobalState:
130
    tokenizer_manager: Union[TokenizerManager, MultiTokenizerRouter, TokenizerWorker]
131
    template_manager: TemplateManager
132
133
134
135
136
137
138
139
140
141
142
    scheduler_info: Dict


_global_state: Optional[_GlobalState] = None


def set_global_state(global_state: _GlobalState):
    global _global_state
    _global_state = global_state


143
144
145
146
147
148
149
async def init_multi_tokenizer() -> ServerArgs:
    """Read args information from shm and init tokenizer manager for current process"""
    pid = os.getpid()
    main_pid = get_main_process_id()
    logger.info(f"current worker_id: {pid}, main processID: {main_pid}")

    # Read configuration from shared memory
150
151
152
153
154
155
156
157
158
    port_args, server_args, scheduler_info = read_from_shared_memory(
        f"multi_tokenizer_args_{main_pid}"
    )
    server_args: ServerArgs

    # API key authentication is not supported in multi-tokenizer mode
    assert (
        server_args.api_key is None
    ), "API key is not supported in multi-tokenizer mode"
159
160
161
162
163
164

    port_args.tokenizer_ipc_name = (
        f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}"
    )

    # Launch multi-tokenizer manager process
165
    tokenizer_manager = TokenizerWorker(server_args, port_args)
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    template_manager = TemplateManager()
    template_manager.initialize_templates(
        tokenizer_manager=tokenizer_manager,
        model_path=server_args.model_path,
        chat_template=server_args.chat_template,
        completion_template=server_args.completion_template,
    )
    # Register this tokenizer with the main tokenizer manager
    await tokenizer_manager.register_to_main_tokenizer_manager()

    tokenizer_manager.max_req_input_len = scheduler_info["max_req_input_len"]
    set_global_state(
        _GlobalState(
            tokenizer_manager=tokenizer_manager,
            template_manager=template_manager,
            scheduler_info=scheduler_info,
        )
    )
184
185
186
187
188
189
190

    if server_args.enable_trace:
        process_tracing_init(server_args.oltp_traces_endpoint, "sglang")
        if server_args.disaggregation_mode == "null":
            thread_label = f"MultiTokenizer-{tokenizer_manager.worker_id}"
            trace_set_thread_info(thread_label)

191
192
193
    return server_args


194
195
@asynccontextmanager
async def lifespan(fast_api_app: FastAPI):
196
    if not getattr(fast_api_app, "is_single_tokenizer_mode", False):
197
        # Initialize multi-tokenizer support for worker processes
198
199
200
201
202
203
204
205
206
        fast_api_app.server_args: ServerArgs = await init_multi_tokenizer()

        # only metrics middleware is supported in multi-tokenizer mode
        worker_pid = os.getpid()
        if fast_api_app.server_args.enable_metrics:
            add_prometheus_middleware(app)
            enable_func_timer()

        logger.info(f"Worker {worker_pid} added prometheus middleware")
207
208
209
210
211
212
213
214
215
        fast_api_app.warmup_thread = threading.Thread(
            target=_wait_and_warmup,
            args=(
                fast_api_app.server_args,
                None,  # pipe_finish_writer not needed in worker
                None,  # launch_callback not needed in worker
            ),
        )

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    # Initialize OpenAI serving handlers
    fast_api_app.state.openai_serving_completion = OpenAIServingCompletion(
        _global_state.tokenizer_manager, _global_state.template_manager
    )
    fast_api_app.state.openai_serving_chat = OpenAIServingChat(
        _global_state.tokenizer_manager, _global_state.template_manager
    )
    fast_api_app.state.openai_serving_embedding = OpenAIServingEmbedding(
        _global_state.tokenizer_manager, _global_state.template_manager
    )
    fast_api_app.state.openai_serving_score = OpenAIServingScore(
        _global_state.tokenizer_manager
    )
    fast_api_app.state.openai_serving_rerank = OpenAIServingRerank(
        _global_state.tokenizer_manager
    )

233
    server_args: ServerArgs = fast_api_app.server_args
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

    tool_server = None
    if server_args.tool_server == "demo":
        from sglang.srt.entrypoints.openai.tool_server import DemoToolServer

        tool_server = DemoToolServer()
    elif server_args.tool_server:
        from sglang.srt.entrypoints.openai.tool_server import MCPToolServer

        tool_server = MCPToolServer()
        await tool_server.add_tool_server(server_args.tool_server)

    try:
        from sglang.srt.entrypoints.openai.serving_responses import (
            OpenAIServingResponses,
        )

        fast_api_app.state.openai_serving_responses = OpenAIServingResponses(
            _global_state.tokenizer_manager,
            _global_state.template_manager,
            enable_prompt_tokens_details=True,
            enable_force_include_usage=True,
            tool_server=tool_server,
        )
    except Exception as e:
        import traceback

        traceback.print_exc()
        logger.warning(f"Can not initialize OpenAIServingResponses, error: {e}")

264
265
    if server_args.warmups is not None:
        await execute_warmups(
266
267
268
            server_args.disaggregation_mode,
            server_args.warmups.split(","),
            _global_state.tokenizer_manager,
269
270
271
272
273
274
        )
        logger.info("Warmup ended")

    warmup_thread = getattr(fast_api_app, "warmup_thread", None)
    if warmup_thread is not None:
        warmup_thread.start()
275
276
277
278
279
280
281
282
283

    try:
        yield
    finally:
        if server_args.tokenizer_worker_num > 1:
            pid = os.getpid()
            logger.info(f"uvicorn worker {pid} ending...")
            warmup_thread.join()
            logger.info(f"uvicorn worker {pid} ended.")
284
285
286


# Fast API
287
288
289
290
app = FastAPI(
    lifespan=lifespan,
    openapi_url=None if get_bool_env_var("DISABLE_OPENAPI_DOC") else "/openapi.json",
)
291
292
293
294
295
296
297
298
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

299

300
301
@app.exception_handler(HTTPException)
async def validation_exception_handler(request: Request, exc: HTTPException):
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    """Enrich HTTP exception with status code and other details.

    For /v1/responses, emit OpenAI-style nested error envelope:
    {"error": {"message": "...", "type": "...", "param": null, "code": <status>}}
    """
    # adjust fmt for responses api
    if request.url.path.startswith("/v1/responses"):
        nested_error = {
            "message": exc.detail,
            "type": HTTPStatus(exc.status_code).phrase,
            "param": None,
            "code": exc.status_code,
        }
        return ORJSONResponse(
            content={"error": nested_error}, status_code=exc.status_code
        )

319
320
321
322
323
324
325
326
327
    error = ErrorResponse(
        object="error",
        message=exc.detail,
        type=str(exc.status_code),
        code=exc.status_code,
    )
    return ORJSONResponse(content=error.model_dump(), status_code=exc.status_code)


328
329
330
# Custom exception handlers to change validation error status codes
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request: Request, exc: RequestValidationError):
331
332
333
334
    """Override FastAPI's default 422 validation error with 400.

    For /v1/responses, emit OpenAI-style nested error envelope; for other endpoints keep legacy format.
    """
335
336
337
338
339
340
341
342
    exc_str = str(exc)
    errors_str = str(exc.errors())

    if errors_str and errors_str != exc_str:
        message = f"{exc_str} {errors_str}"
    else:
        message = exc_str

343
344
345
346
347
348
349
350
351
352
    if request.url.path.startswith("/v1/responses"):
        # adapt specially, for v1/responses API only (notice the error key is different)
        nested_error = {
            "message": message,
            "type": HTTPStatus.BAD_REQUEST.phrase,
            "param": None,
            "code": HTTPStatus.BAD_REQUEST.value,
        }
        return ORJSONResponse(status_code=400, content={"error": nested_error})

353
354
355
356
357
358
    err = ErrorResponse(
        message=message,
        type=HTTPStatus.BAD_REQUEST.phrase,
        code=HTTPStatus.BAD_REQUEST.value,
    )

359
360
    return ORJSONResponse(
        status_code=400,
361
        content=err.model_dump(),
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    )


async def validate_json_request(raw_request: Request):
    """Validate that the request content-type is application/json."""
    content_type = raw_request.headers.get("content-type", "").lower()
    media_type = content_type.split(";", maxsplit=1)[0]
    if media_type != "application/json":
        raise RequestValidationError(
            errors=[
                {
                    "loc": ["header", "content-type"],
                    "msg": "Unsupported Media Type: Only 'application/json' is allowed",
                    "type": "value_error",
                }
            ]
        )


381
382
383
384
385
386
##### Native API endpoints #####


@app.get("/health")
@app.get("/health_generate")
async def health_generate(request: Request) -> Response:
387
388
389
390
391
392
393
    """
    Check the health of the inference server by sending a special request to generate one token.

    If the server is running something, this request will be ignored, so it creates zero overhead.
    If the server is not running anything, this request will be run, so we know whether the server is healthy.
    """

394
395
396
    if _global_state.tokenizer_manager.gracefully_exit:
        logger.info("Health check request received during shutdown. Returning 503.")
        return Response(status_code=503)
397

Lianmin Zheng's avatar
Lianmin Zheng committed
398
    if _global_state.tokenizer_manager.server_status == ServerStatus.Starting:
399
400
        return Response(status_code=503)

401
402
    sampling_params = {"max_new_tokens": 1, "temperature": 0.0}
    rid = f"HEALTH_CHECK_{time.time()}"
403

404
    if _global_state.tokenizer_manager.is_image_gen:
405
406
        # Keep this branch for some internal use cases.
        raise NotImplementedError("Image generation is not supported yet.")
407
    elif _global_state.tokenizer_manager.is_generation:
408
        gri = GenerateReqInput(
409
410
411
412
            rid=rid,
            input_ids=[0],
            sampling_params=sampling_params,
            log_metrics=False,
413
        )
414
415
416
417
418
419
        if (
            _global_state.tokenizer_manager.server_args.disaggregation_mode
            != DisaggregationMode.NULL
        ):
            gri.bootstrap_host = FAKE_BOOTSTRAP_HOST
            gri.bootstrap_room = 0
420
421
    else:
        gri = EmbeddingReqInput(
422
            rid=rid, input_ids=[0], sampling_params=sampling_params, log_metrics=False
423
424
        )

425
    async def gen():
426
        async for _ in _global_state.tokenizer_manager.generate_request(gri, request):
427
            break
428
429

    task = asyncio.create_task(gen())
430
431
432
433

    # As long as we receive any response from the detokenizer/scheduler, we consider the server is healthy.
    tic = time.time()
    while time.time() < tic + HEALTH_CHECK_TIMEOUT:
434
435
436
437
        await asyncio.sleep(1)
        if _global_state.tokenizer_manager.last_receive_tstamp > tic:
            task.cancel()
            _global_state.tokenizer_manager.rid_to_state.pop(rid, None)
Lianmin Zheng's avatar
Lianmin Zheng committed
438
            _global_state.tokenizer_manager.server_status = ServerStatus.Up
439
440
441
442
443
444
445
446
447
448
449
450
451
            return Response(status_code=200)

    task.cancel()
    tic_time = time.strftime("%H:%M:%S", time.localtime(tic))
    last_receive_time = time.strftime(
        "%H:%M:%S", time.localtime(_global_state.tokenizer_manager.last_receive_tstamp)
    )
    logger.error(
        f"Health check failed. Server couldn't get a response from detokenizer for last "
        f"{HEALTH_CHECK_TIMEOUT} seconds. tic start time: {tic_time}. "
        f"last_heartbeat time: {last_receive_time}"
    )
    _global_state.tokenizer_manager.rid_to_state.pop(rid, None)
Lianmin Zheng's avatar
Lianmin Zheng committed
452
    _global_state.tokenizer_manager.server_status = ServerStatus.UnHealthy
453
    return Response(status_code=503)
454
455
456
457
458
459


@app.get("/get_model_info")
async def get_model_info():
    """Get the model information."""
    result = {
460
461
462
        "model_path": _global_state.tokenizer_manager.model_path,
        "tokenizer_path": _global_state.tokenizer_manager.server_args.tokenizer_path,
        "is_generation": _global_state.tokenizer_manager.is_generation,
463
        "preferred_sampling_params": _global_state.tokenizer_manager.server_args.preferred_sampling_params,
464
        "weight_version": _global_state.tokenizer_manager.server_args.weight_version,
465
466
467
468
    }
    return result


469
470
471
472
473
474
475
476
@app.get("/get_weight_version")
async def get_weight_version():
    """Get the current weight version."""
    return {
        "weight_version": _global_state.tokenizer_manager.server_args.weight_version
    }


477
478
@app.get("/get_server_info")
async def get_server_info():
479
480
481
482
    # Returns interna states per DP.
    internal_states: List[Dict[Any, Any]] = (
        await _global_state.tokenizer_manager.get_internal_state()
    )
483
    return {
484
        **dataclasses.asdict(_global_state.tokenizer_manager.server_args),
485
        **_global_state.scheduler_info,
486
        "internal_states": internal_states,
487
488
489
490
        "version": __version__,
    }


Liangsheng Yin's avatar
Liangsheng Yin committed
491
492
493
494
495
@app.get("/get_load")
async def get_load():
    return await _global_state.tokenizer_manager.get_load()


496
# example usage:
497
# curl -s -X POST http://localhost:30000/set_internal_state -H "Content-Type: application/json" -d '{"server_args": {"pp_max_micro_batch_size": 8}}'
498
499
500
501
502
503
@app.api_route("/set_internal_state", methods=["POST", "PUT"])
async def set_internal_state(obj: SetInternalStateReq, request: Request):
    res = await _global_state.tokenizer_manager.set_internal_state(obj)
    return res


504
505
506
507
508
509
510
511
# fastapi implicitly converts json in the request to obj (dataclass)
@app.api_route("/generate", methods=["POST", "PUT"])
async def generate_request(obj: GenerateReqInput, request: Request):
    """Handle a generate request."""
    if obj.stream:

        async def stream_results() -> AsyncIterator[bytes]:
            try:
512
                async for out in _global_state.tokenizer_manager.generate_request(
513
514
515
516
517
518
519
                    obj, request
                ):
                    yield b"data: " + orjson.dumps(
                        out, option=orjson.OPT_NON_STR_KEYS
                    ) + b"\n\n"
            except ValueError as e:
                out = {"error": {"message": str(e)}}
520
                logger.error(f"[http_server] Error: {e}")
521
522
523
524
525
526
527
528
                yield b"data: " + orjson.dumps(
                    out, option=orjson.OPT_NON_STR_KEYS
                ) + b"\n\n"
            yield b"data: [DONE]\n\n"

        return StreamingResponse(
            stream_results(),
            media_type="text/event-stream",
529
            background=_global_state.tokenizer_manager.create_abort_task(obj),
530
531
532
        )
    else:
        try:
533
            ret = await _global_state.tokenizer_manager.generate_request(
534
535
536
537
                obj, request
            ).__anext__()
            return ret
        except ValueError as e:
538
            logger.error(f"[http_server] Error: {e}")
539
540
541
            return _create_error_response(e)


542
543
544
545
546
547
548
549
550
@app.api_route("/generate_from_file", methods=["POST"])
async def generate_from_file_request(file: UploadFile, request: Request):
    """Handle a generate request, this is purely to work with input_embeds."""
    content = await file.read()
    input_embeds = json.loads(content.decode("utf-8"))

    obj = GenerateReqInput(
        input_embeds=input_embeds,
        sampling_params={
551
            "temperature": 0.0,
552
553
554
555
556
            "max_new_tokens": 512,
        },
    )

    try:
557
558
559
        ret = await _global_state.tokenizer_manager.generate_request(
            obj, request
        ).__anext__()
560
561
562
563
564
565
        return ret
    except ValueError as e:
        logger.error(f"Error: {e}")
        return _create_error_response(e)


566
567
568
569
@app.api_route("/encode", methods=["POST", "PUT"])
async def encode_request(obj: EmbeddingReqInput, request: Request):
    """Handle an embedding request."""
    try:
570
        ret = await _global_state.tokenizer_manager.generate_request(
571
572
573
574
575
576
577
578
579
580
581
            obj, request
        ).__anext__()
        return ret
    except ValueError as e:
        return _create_error_response(e)


@app.api_route("/classify", methods=["POST", "PUT"])
async def classify_request(obj: EmbeddingReqInput, request: Request):
    """Handle a reward model request. Now the arguments and return values are the same as embedding models."""
    try:
582
        ret = await _global_state.tokenizer_manager.generate_request(
583
584
585
586
587
588
589
            obj, request
        ).__anext__()
        return ret
    except ValueError as e:
        return _create_error_response(e)


590
@app.api_route("/flush_cache", methods=["GET", "POST"])
591
592
async def flush_cache():
    """Flush the radix cache."""
593
    ret = await _global_state.tokenizer_manager.flush_cache()
594
595
596
    return Response(
        content="Cache flushed.\nPlease check backend logs for more details. "
        "(When there are running or waiting requests, the operation will not be performed.)\n",
597
        status_code=200 if ret.success else HTTPStatus.BAD_REQUEST,
598
599
600
    )


601
602
603
604
605
606
607
608
609
610
@app.api_route("/clear_hicache_storage_backend", methods=["GET", "POST"])
async def clear_hicache_storage_backend():
    """Clear the hierarchical cache storage backend."""
    ret = await _global_state.tokenizer_manager.clear_hicache_storage()
    return Response(
        content="Hierarchical cache storage backend cleared.\n",
        status_code=200 if ret.success else HTTPStatus.BAD_REQUEST,
    )


611
@app.api_route("/start_profile", methods=["GET", "POST"])
612
async def start_profile_async(obj: Optional[ProfileReqInput] = None):
613
    """Start profiling."""
614
615
616
617
    if obj is None:
        obj = ProfileReqInput()

    await _global_state.tokenizer_manager.start_profile(
618
        output_dir=obj.output_dir,
619
        start_step=obj.start_step,
620
621
622
623
        num_steps=obj.num_steps,
        activities=obj.activities,
        with_stack=obj.with_stack,
        record_shapes=obj.record_shapes,
624
        profile_by_stage=obj.profile_by_stage,
625
    )
626
627
628
629
630
631
632
633
634
    return Response(
        content="Start profiling.\n",
        status_code=200,
    )


@app.api_route("/stop_profile", methods=["GET", "POST"])
async def stop_profile_async():
    """Stop profiling."""
635
    await _global_state.tokenizer_manager.stop_profile()
636
637
638
639
640
641
    return Response(
        content="Stop profiling. This will take some time.\n",
        status_code=200,
    )


642
643
644
645
646
647
648
649
650
651
652
653
@app.api_route("/freeze_gc", methods=["GET", "POST"])
async def freeze_gc_async():
    """
    See engine.freeze_gc for more details.
    """
    await _global_state.tokenizer_manager.freeze_gc()
    return Response(
        content="Garbage collection frozen.\n",
        status_code=200,
    )


654
655
656
@app.api_route("/start_expert_distribution_record", methods=["GET", "POST"])
async def start_expert_distribution_record_async():
    """Start recording the expert distribution. Clear the previous record if any."""
657
    await _global_state.tokenizer_manager.start_expert_distribution_record()
658
659
660
661
662
663
664
665
666
    return Response(
        content="Start recording the expert distribution.\n",
        status_code=200,
    )


@app.api_route("/stop_expert_distribution_record", methods=["GET", "POST"])
async def stop_expert_distribution_record_async():
    """Stop recording the expert distribution."""
667
    await _global_state.tokenizer_manager.stop_expert_distribution_record()
668
669
670
671
672
673
674
675
676
    return Response(
        content="Stop recording the expert distribution.\n",
        status_code=200,
    )


@app.api_route("/dump_expert_distribution_record", methods=["GET", "POST"])
async def dump_expert_distribution_record_async():
    """Dump expert distribution record."""
677
    await _global_state.tokenizer_manager.dump_expert_distribution_record()
678
679
680
681
682
683
    return Response(
        content="Dump expert distribution record.\n",
        status_code=200,
    )


684
685
@app.post("/update_weights_from_disk")
async def update_weights_from_disk(obj: UpdateWeightFromDiskReqInput, request: Request):
686
687
688
    """Update the weights from disk inplace without re-launching the server."""
    success, message, num_paused_requests = (
        await _global_state.tokenizer_manager.update_weights_from_disk(obj, request)
689
    )
690
691
692
693
694
695

    # Update weight version if provided and weights update was successful
    if success and obj.weight_version is not None:
        _update_weight_version_if_provided(obj.weight_version)
        message += f" Weight version updated to {obj.weight_version}."

696
697
698
699
700
    content = {
        "success": success,
        "message": message,
        "num_paused_requests": num_paused_requests,
    }
701
702
703
704
705
706
707
708
709
710
711
712
    if success:
        return ORJSONResponse(
            content,
            status_code=HTTPStatus.OK,
        )
    else:
        return ORJSONResponse(
            content,
            status_code=HTTPStatus.BAD_REQUEST,
        )


713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
@app.post("/init_weights_send_group_for_remote_instance")
async def init_weights_send_group_for_remote_instance(
    obj: InitWeightsSendGroupForRemoteInstanceReqInput, request: Request
):
    success, message = (
        await _global_state.tokenizer_manager.init_weights_send_group_for_remote_instance(
            obj, request
        )
    )
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


@app.post("/send_weights_to_remote_instance")
async def send_weights_to_remote_instance(
    obj: SendWeightsToRemoteInstanceReqInput, request: Request
):
    success, message = (
        await _global_state.tokenizer_manager.send_weights_to_remote_instance(
            obj, request
        )
    )
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


745
746
747
748
749
@app.post("/init_weights_update_group")
async def init_weights_update_group(
    obj: InitWeightsUpdateGroupReqInput, request: Request
):
    """Initialize the parameter update group."""
750
    success, message = await _global_state.tokenizer_manager.init_weights_update_group(
751
752
753
754
755
756
757
758
759
        obj, request
    )
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


760
761
762
763
764
765
766
767
768
769
770
771
772
773
@app.post("/destroy_weights_update_group")
async def destroy_weights_update_group(
    obj: DestroyWeightsUpdateGroupReqInput, request: Request
):
    """Destroy the parameter update group."""
    success, message = (
        await _global_state.tokenizer_manager.destroy_weights_update_group(obj, request)
    )
    content = {"success": success, "message": message}
    return ORJSONResponse(
        content, status_code=200 if success else HTTPStatus.BAD_REQUEST
    )


774
775
776
777
778
779
780
781
782
783
784
785
786
787
@app.post("/update_weights_from_tensor")
async def update_weights_from_tensor(
    obj: UpdateWeightsFromTensorReqInput, request: Request
):
    """Update the weights from tensor inplace without re-launching the server.
    Notes:
    1. Ensure that the model is on the correct device (e.g., GPU) before calling this endpoint. If the model is moved to the CPU unexpectedly, it may cause performance issues or runtime errors.
    2. HTTP will transmit only the metadata of the tensor, while the tensor itself will be directly copied to the model.
    3. Any binary data in the named tensors should be base64 encoded.
    """

    success, message = await _global_state.tokenizer_manager.update_weights_from_tensor(
        obj, request
    )
788
789
790
791
792
793

    # Update weight version if provided and weights update was successful
    if success and obj.weight_version is not None:
        _update_weight_version_if_provided(obj.weight_version)
        message += f" Weight version updated to {obj.weight_version}."

794
795
796
797
798
799
    content = {"success": success, "message": message}
    return ORJSONResponse(
        content, status_code=200 if success else HTTPStatus.BAD_REQUEST
    )


800
801
802
803
804
@app.post("/update_weights_from_distributed")
async def update_weights_from_distributed(
    obj: UpdateWeightsFromDistributedReqInput, request: Request
):
    """Update model parameter from distributed online."""
805
806
807
808
    success, message = (
        await _global_state.tokenizer_manager.update_weights_from_distributed(
            obj, request
        )
809
    )
810
811
812
813
814
815

    # Update weight version if provided and weights update was successful
    if success and obj.weight_version is not None:
        _update_weight_version_if_provided(obj.weight_version)
        message += f" Weight version updated to {obj.weight_version}."

816
817
818
819
820
821
822
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
@app.post("/update_weight_version")
async def update_weight_version(obj: UpdateWeightVersionReqInput, request: Request):
    """Update the weight version. This operation requires no active requests."""
    if obj.abort_all_requests:
        _global_state.tokenizer_manager.abort_request(abort_all=True)

    # Use a simple approach without the complex lock mechanism for now
    # since weight_version update is a simple operation that doesn't affect model weights
    try:
        # Update the weight version in server args (the single source of truth)
        _global_state.tokenizer_manager.server_args.weight_version = obj.new_version

        return ORJSONResponse(
            {
                "success": True,
                "message": f"Weight version updated to {obj.new_version}",
                "new_version": obj.new_version,
            },
            status_code=HTTPStatus.OK,
        )
    except Exception as e:
        return ORJSONResponse(
            {
                "success": False,
                "message": f"Failed to update weight version: {str(e)}",
            },
            status_code=HTTPStatus.BAD_REQUEST,
        )


853
854
855
856
@app.api_route("/get_weights_by_name", methods=["GET", "POST"])
async def get_weights_by_name(obj: GetWeightsByNameReqInput, request: Request):
    """Get model parameter by name."""
    try:
857
        ret = await _global_state.tokenizer_manager.get_weights_by_name(obj, request)
858
859
860
861
862
863
864
865
866
867
868
869
        if ret is None:
            return _create_error_response("Get parameter by name failed")
        else:
            return ORJSONResponse(ret, status_code=200)
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/release_memory_occupation", methods=["GET", "POST"])
async def release_memory_occupation(
    obj: ReleaseMemoryOccupationReqInput, request: Request
):
870
    """Release GPU memory occupation temporarily."""
871
    try:
872
        await _global_state.tokenizer_manager.release_memory_occupation(obj, request)
873
874
875
876
877
878
879
880
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/resume_memory_occupation", methods=["GET", "POST"])
async def resume_memory_occupation(
    obj: ResumeMemoryOccupationReqInput, request: Request
):
881
    """Resume GPU memory occupation."""
882
    try:
883
        await _global_state.tokenizer_manager.resume_memory_occupation(obj, request)
884
885
886
887
    except Exception as e:
        return _create_error_response(e)


888
889
890
891
892
893
894
895
896
897
898
899
900
@app.api_route("/slow_down", methods=["GET", "POST"])
async def slow_down(obj: SlowDownReqInput, request: Request):
    """Slow down the system deliberately. Only for testing. Example scenario:
    when we want to test performance of D in large-scale PD disaggregation and have no enough nodes for P,
    we can use this to slow down D to let it have enough running sequences, and then disable slowdown
    to let it run in full batch size.
    """
    try:
        await _global_state.tokenizer_manager.slow_down(obj, request)
    except Exception as e:
        return _create_error_response(e)


901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
@app.api_route("/load_lora_adapter", methods=["POST"])
async def load_lora_adapter(obj: LoadLoRAAdapterReqInput, request: Request):
    """Load a new LoRA adapter without re-launching the server."""
    result = await _global_state.tokenizer_manager.load_lora_adapter(obj, request)

    if result.success:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.OK,
        )
    else:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.BAD_REQUEST,
        )


@app.api_route("/unload_lora_adapter", methods=["POST"])
async def unload_lora_adapter(obj: UnloadLoRAAdapterReqInput, request: Request):
    """Load a new LoRA adapter without re-launching the server."""
    result = await _global_state.tokenizer_manager.unload_lora_adapter(obj, request)

    if result.success:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.OK,
        )
    else:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.BAD_REQUEST,
        )


935
936
937
938
@app.api_route("/open_session", methods=["GET", "POST"])
async def open_session(obj: OpenSessionReqInput, request: Request):
    """Open a session, and return its unique session id."""
    try:
939
        session_id = await _global_state.tokenizer_manager.open_session(obj, request)
940
941
942
943
944
945
946
947
948
949
950
        if session_id is None:
            raise Exception(
                "Failed to open the session. Check if a session with the same id is still open."
            )
        return session_id
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/close_session", methods=["GET", "POST"])
async def close_session(obj: CloseSessionReqInput, request: Request):
951
    """Close the session."""
952
    try:
953
        await _global_state.tokenizer_manager.close_session(obj, request)
954
955
956
957
958
959
960
        return Response(status_code=200)
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/configure_logging", methods=["GET", "POST"])
async def configure_logging(obj: ConfigureLoggingReq, request: Request):
961
    """Configure the request logging options."""
962
    _global_state.tokenizer_manager.configure_logging(obj)
963
964
965
    return Response(status_code=200)


Lianmin Zheng's avatar
Lianmin Zheng committed
966
967
968
969
@app.post("/abort_request")
async def abort_request(obj: AbortReq, request: Request):
    """Abort a request."""
    try:
970
971
972
        _global_state.tokenizer_manager.abort_request(
            rid=obj.rid, abort_all=obj.abort_all
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
973
974
975
976
977
        return Response(status_code=200)
    except Exception as e:
        return _create_error_response(e)


978
979
@app.post("/parse_function_call")
async def parse_function_call_request(obj: ParseFunctionCallReq, request: Request):
YAMY's avatar
YAMY committed
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
    """
    A native API endpoint to parse function calls from a text.
    """
    # 1) Initialize the parser based on the request body
    parser = FunctionCallParser(tools=obj.tools, tool_call_parser=obj.tool_call_parser)

    # 2) Call the non-stream parsing method (non-stream)
    normal_text, calls = parser.parse_non_stream(obj.text)

    # 3) Organize the response content
    response_data = {
        "normal_text": normal_text,
        "calls": [
            call.model_dump() for call in calls
        ],  # Convert pydantic objects to dictionaries
    }

    return ORJSONResponse(content=response_data, status_code=200)


Xihuai Wang's avatar
Xihuai Wang committed
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
@app.post("/separate_reasoning")
async def separate_reasoning_request(obj: SeparateReasoningReqInput, request: Request):
    """
    A native API endpoint to separate reasoning from a text.
    """
    # 1) Initialize the parser based on the request body
    parser = ReasoningParser(model_type=obj.reasoning_parser)

    # 2) Call the non-stream parsing method (non-stream)
    reasoning_text, normal_text = parser.parse_non_stream(obj.text)

    # 3) Organize the response content
    response_data = {
        "reasoning_text": reasoning_text,
        "text": normal_text,
    }

    return ORJSONResponse(content=response_data, status_code=200)


1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
@app.post("/pause_generation")
async def pause_generation(request: Request):
    """Pause generation."""
    await _global_state.tokenizer_manager.pause_generation()
    return ORJSONResponse(
        content={"message": "Generation paused successfully.", "status": "ok"},
        status_code=200,
    )


@app.post("/continue_generation")
async def continue_generation(request: Request):
    """Continue generation."""
    await _global_state.tokenizer_manager.continue_generation()
    return ORJSONResponse(
        content={"message": "Generation continued successfully.", "status": "ok"},
        status_code=200,
    )


1040
1041
1042
##### OpenAI-compatible API endpoints #####


1043
1044
1045
1046
1047
1048
@app.post("/v1/completions", dependencies=[Depends(validate_json_request)])
async def openai_v1_completions(request: CompletionRequest, raw_request: Request):
    """OpenAI-compatible text completion endpoint."""
    return await raw_request.app.state.openai_serving_completion.handle_request(
        request, raw_request
    )
1049
1050


1051
1052
1053
1054
1055
1056
1057
1058
@app.post("/v1/chat/completions", dependencies=[Depends(validate_json_request)])
async def openai_v1_chat_completions(
    request: ChatCompletionRequest, raw_request: Request
):
    """OpenAI-compatible chat completion endpoint."""
    return await raw_request.app.state.openai_serving_chat.handle_request(
        request, raw_request
    )
1059
1060


1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
@app.post(
    "/v1/embeddings",
    response_class=ORJSONResponse,
    dependencies=[Depends(validate_json_request)],
)
async def openai_v1_embeddings(request: EmbeddingRequest, raw_request: Request):
    """OpenAI-compatible embeddings endpoint."""
    return await raw_request.app.state.openai_serving_embedding.handle_request(
        request, raw_request
    )
1071
1072
1073


@app.get("/v1/models", response_class=ORJSONResponse)
1074
1075
async def available_models():
    """Show available models. OpenAI-compatible endpoint."""
1076
    served_model_names = [_global_state.tokenizer_manager.served_model_name]
1077
1078
    model_cards = []
    for served_model_name in served_model_names:
1079
1080
1081
1082
1083
1084
1085
        model_cards.append(
            ModelCard(
                id=served_model_name,
                root=served_model_name,
                max_model_len=_global_state.tokenizer_manager.model_config.context_len,
            )
        )
1086
1087
1088
    return ModelList(data=model_cards)


1089
1090
1091
1092
@app.get("/v1/models/{model:path}", response_class=ORJSONResponse)
async def retrieve_model(model: str):
    """Retrieves a model instance, providing basic information about the model."""
    served_model_names = [_global_state.tokenizer_manager.served_model_name]
1093

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
    if model not in served_model_names:
        return ORJSONResponse(
            status_code=404,
            content={
                "error": {
                    "message": f"The model '{model}' does not exist",
                    "type": "invalid_request_error",
                    "param": "model",
                    "code": "model_not_found",
                }
            },
        )
1106

1107
1108
1109
1110
1111
    return ModelCard(
        id=model,
        root=model,
        max_model_len=_global_state.tokenizer_manager.model_config.context_len,
    )
1112
1113


1114
1115
1116
1117
1118
1119
1120
1121
@app.post("/v1/score", dependencies=[Depends(validate_json_request)])
async def v1_score_request(request: ScoringRequest, raw_request: Request):
    """Endpoint for the decoder-only scoring API. See Engine.score() for detailed documentation."""
    return await raw_request.app.state.openai_serving_score.handle_request(
        request, raw_request
    )


1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
@app.post("/v1/responses", dependencies=[Depends(validate_json_request)])
async def v1_responses_request(request: dict, raw_request: Request):
    """Endpoint for the responses API with reasoning support."""

    request_obj = ResponsesRequest(**request)
    result = await raw_request.app.state.openai_serving_responses.create_responses(
        request_obj, raw_request
    )

    # Handle streaming responses
    if isinstance(result, AsyncGenerator):
        return StreamingResponse(
            result,
            media_type="text/event-stream",
            headers={"Cache-Control": "no-cache", "Connection": "keep-alive"},
        )

    return result


@app.get("/v1/responses/{response_id}")
async def v1_retrieve_responses(response_id: str, raw_request: Request):
    """Retrieve a response by ID."""
    return await raw_request.app.state.openai_serving_responses.retrieve_responses(
        response_id
    )


@app.post("/v1/responses/{response_id}/cancel")
async def v1_cancel_responses(response_id: str, raw_request: Request):
    """Cancel a background response."""
    return await raw_request.app.state.openai_serving_responses.cancel_responses(
        response_id
    )


1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
@app.api_route(
    "/v1/rerank", methods=["POST", "PUT"], dependencies=[Depends(validate_json_request)]
)
async def v1_rerank_request(request: V1RerankReqInput, raw_request: Request):
    """Endpoint for reranking documents based on query relevance."""
    return await raw_request.app.state.openai_serving_rerank.handle_request(
        request, raw_request
    )


1168
1169
1170
1171
1172
1173
1174
1175
## SageMaker API
@app.get("/ping")
async def sagemaker_health() -> Response:
    """Check the health of the http server."""
    return Response(status_code=200)


@app.post("/invocations")
1176
1177
1178
1179
1180
1181
1182
async def sagemaker_chat_completions(
    request: ChatCompletionRequest, raw_request: Request
):
    """OpenAI-compatible chat completion endpoint."""
    return await raw_request.app.state.openai_serving_chat.handle_request(
        request, raw_request
    )
1183
1184


1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
## Vertex AI API
@app.post(os.environ.get("AIP_PREDICT_ROUTE", "/vertex_generate"))
async def vertex_generate(vertex_req: VertexGenerateReqInput, raw_request: Request):
    if not vertex_req.instances:
        return []
    inputs = {}
    for input_key in ("text", "input_ids", "input_embeds"):
        if vertex_req.instances[0].get(input_key):
            inputs[input_key] = [
                instance.get(input_key) for instance in vertex_req.instances
            ]
            break
    image_data = [
        instance.get("image_data")
        for instance in vertex_req.instances
        if instance.get("image_data") is not None
    ] or None
    req = GenerateReqInput(
        **inputs,
        image_data=image_data,
        **(vertex_req.parameters or {}),
    )
    ret = await generate_request(req, raw_request)
1208
1209
    if isinstance(ret, Response):
        return ret
1210
1211
1212
    return ORJSONResponse({"predictions": ret})


1213
1214
1215
1216
1217
1218
def _update_weight_version_if_provided(weight_version: Optional[str]) -> None:
    """Update weight version if provided."""
    if weight_version is not None:
        _global_state.tokenizer_manager.server_args.weight_version = weight_version


1219
1220
1221
1222
1223
1224
1225
1226
1227
def _create_error_response(e):
    return ORJSONResponse(
        {"error": {"message": str(e)}}, status_code=HTTPStatus.BAD_REQUEST
    )


def launch_server(
    server_args: ServerArgs,
    pipe_finish_writer: Optional[multiprocessing.connection.Connection] = None,
1228
    launch_callback: Optional[Callable[[], None]] = None,
1229
1230
1231
1232
1233
1234
1235
1236
):
    """
    Launch SRT (SGLang Runtime) Server.

    The SRT server consists of an HTTP server and an SRT engine.

    - HTTP server: A FastAPI server that routes requests to the engine.
    - The engine consists of three components:
1237
        1. TokenizerManager: Tokenizes the requests and sends them to the scheduler.
1238
1239
1240
1241
        2. Scheduler (subprocess): Receives requests from the Tokenizer Manager, schedules batches, forwards them, and sends the output tokens to the Detokenizer Manager.
        3. DetokenizerManager (subprocess): Detokenizes the output tokens and sends the result back to the Tokenizer Manager.

    Note:
1242
    1. The HTTP server, Engine, and TokenizerManager both run in the main process.
1243
    2. Inter-process communication is done through IPC (each process uses a different port) via the ZMQ library.
1244
    """
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
    if server_args.tokenizer_worker_num > 1:
        port_args = PortArgs.init_new(server_args)
        port_args.tokenizer_worker_ipc_name = (
            f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}"
        )
        tokenizer_manager, template_manager, scheduler_info = _launch_subprocesses(
            server_args=server_args, port_args=port_args
        )
    else:
        tokenizer_manager, template_manager, scheduler_info = _launch_subprocesses(
            server_args=server_args,
        )

1258
1259
1260
1261
1262
1263
        if server_args.enable_trace:
            process_tracing_init(server_args.oltp_traces_endpoint, "sglang")
            if server_args.disaggregation_mode == "null":
                thread_label = "Tokenizer"
                trace_set_thread_info(thread_label)

1264
1265
    set_global_state(
        _GlobalState(
1266
            tokenizer_manager=tokenizer_manager,
1267
            template_manager=template_manager,
1268
1269
1270
1271
            scheduler_info=scheduler_info,
        )
    )

1272
    if server_args.tokenizer_worker_num > 1:
1273
1274
1275
1276
        multi_tokenizer_args_shm = write_data_for_multi_tokenizer(
            port_args,
            server_args,
            scheduler_info,
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
        )
    else:
        # Add api key authorization
        if server_args.api_key:
            add_api_key_middleware(app, server_args.api_key)

        # Add prometheus middleware
        if server_args.enable_metrics:
            add_prometheus_middleware(app)
            enable_func_timer()

        # Send a warmup request - we will create the thread launch it
        # in the lifespan after all other warmups have fired.
        warmup_thread = threading.Thread(
            target=_wait_and_warmup,
            args=(
                server_args,
                pipe_finish_writer,
                launch_callback,
            ),
        )
        app.warmup_thread = warmup_thread
1299
1300
1301
1302

    try:
        # Update logging configs
        set_uvicorn_logging_configs()
1303
        app.server_args = server_args
1304
        # Listen for HTTP requests
1305
1306
1307
1308
1309
1310
1311
1312
        if server_args.tokenizer_worker_num > 1:
            from uvicorn.config import LOGGING_CONFIG

            LOGGING_CONFIG["loggers"]["sglang.srt.entrypoints.http_server"] = {
                "handlers": ["default"],
                "level": "INFO",
                "propagate": False,
            }
1313
1314
1315

            monkey_patch_uvicorn_multiprocessing()

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
            uvicorn.run(
                "sglang.srt.entrypoints.http_server:app",
                host=server_args.host,
                port=server_args.port,
                log_level=server_args.log_level_http or server_args.log_level,
                timeout_keep_alive=5,
                loop="uvloop",
                workers=server_args.tokenizer_worker_num,
            )
        else:
1326
            app.is_single_tokenizer_mode = True
1327
1328
1329
1330
1331
1332
1333
1334
            uvicorn.run(
                app,
                host=server_args.host,
                port=server_args.port,
                log_level=server_args.log_level_http or server_args.log_level,
                timeout_keep_alive=5,
                loop="uvloop",
            )
1335
    finally:
1336
        if server_args.tokenizer_worker_num > 1:
1337
1338
            multi_tokenizer_args_shm.unlink()
            _global_state.tokenizer_manager.socket_mapping.clear_all_sockets()
1339
1340
        else:
            warmup_thread.join()
1341
1342


Zilin Zhu's avatar
Zilin Zhu committed
1343
def _execute_server_warmup(
1344
1345
1346
    server_args: ServerArgs,
    pipe_finish_writer: Optional[multiprocessing.connection.Connection],
):
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
    headers = {}
    url = server_args.url()
    if server_args.api_key:
        headers["Authorization"] = f"Bearer {server_args.api_key}"

    # Wait until the server is launched
    success = False
    for _ in range(120):
        time.sleep(1)
        try:
            res = requests.get(url + "/get_model_info", timeout=5, headers=headers)
            assert res.status_code == 200, f"{res=}, {res.text=}"
            success = True
            break
        except (AssertionError, requests.exceptions.RequestException):
            last_traceback = get_exception_traceback()
            pass

    if not success:
        if pipe_finish_writer is not None:
            pipe_finish_writer.send(last_traceback)
        logger.error(f"Initialization failed. warmup error: {last_traceback}")
        kill_process_tree(os.getpid())
Zilin Zhu's avatar
Zilin Zhu committed
1370
        return success
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383

    model_info = res.json()

    # Send a warmup request
    request_name = "/generate" if model_info["is_generation"] else "/encode"
    max_new_tokens = 8 if model_info["is_generation"] else 1
    json_data = {
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": max_new_tokens,
        },
    }
    if server_args.skip_tokenizer_init:
fzyzcjy's avatar
fzyzcjy committed
1384
        json_data["input_ids"] = [[10, 11, 12] for _ in range(server_args.dp_size)]
fzyzcjy's avatar
fzyzcjy committed
1385
1386
1387
        # TODO Workaround the bug that embedding errors for list of size 1
        if server_args.dp_size == 1:
            json_data["input_ids"] = json_data["input_ids"][0]
1388
    else:
fzyzcjy's avatar
fzyzcjy committed
1389
        json_data["text"] = ["The capital city of France is"] * server_args.dp_size
fzyzcjy's avatar
fzyzcjy committed
1390
1391
1392
        # TODO Workaround the bug that embedding errors for list of size 1
        if server_args.dp_size == 1:
            json_data["text"] = json_data["text"][0]
1393

1394
1395
1396
1397
1398
1399
1400
1401
    # Debug dumping
    if server_args.debug_tensor_dump_input_file:
        json_data.pop("text", None)
        json_data["input_ids"] = np.load(
            server_args.debug_tensor_dump_input_file
        ).tolist()
        json_data["sampling_params"]["max_new_tokens"] = 0

1402
    try:
1403
1404
1405
1406
1407
1408
1409
        if server_args.disaggregation_mode == "null":
            res = requests.post(
                url + request_name,
                json=json_data,
                headers=headers,
                timeout=600,
            )
1410
            assert res.status_code == 200, f"{res}"
1411
1412
            _global_state.tokenizer_manager.server_status = ServerStatus.Up

1413
        else:
1414
            logger.info(f"Start of pd disaggregation warmup ...")
1415
1416
1417
1418
1419
1420
            json_data = {
                "sampling_params": {
                    "temperature": 0.0,
                    "max_new_tokens": 8,
                    "ignore_eos": True,
                },
Byron Hsu's avatar
Byron Hsu committed
1421
                "bootstrap_host": [FAKE_BOOTSTRAP_HOST] * server_args.dp_size,
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
                # This is a hack to ensure fake transfer is enabled during prefill warmup
                # ensure each dp rank has a unique bootstrap_room during prefill warmup
                "bootstrap_room": [
                    i * (2**63 // server_args.dp_size) + (i % server_args.tp_size)
                    for i in range(server_args.dp_size)
                ],
                "input_ids": [[0, 1, 2, 3]] * server_args.dp_size,
            }
            res = requests.post(
                url + request_name,
                json=json_data,
                headers=headers,
                timeout=1800,  # because of deep gemm precache is very long if not precache.
            )
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
            if res.status_code == 200:
                logger.info(
                    f"End of prefill disaggregation mode warmup with status {res.status_code}, resp: {res.json()}"
                )
                _global_state.tokenizer_manager.server_status = ServerStatus.Up
            else:
                logger.info(
                    "Prefill disaggregation mode warm Up Failed, status code: {}".format(
                        res.status_code
                    )
                )
                _global_state.tokenizer_manager.server_status = ServerStatus.UnHealthy
1448

1449
1450
1451
1452
1453
1454
    except Exception:
        last_traceback = get_exception_traceback()
        if pipe_finish_writer is not None:
            pipe_finish_writer.send(last_traceback)
        logger.error(f"Initialization failed. warmup error: {last_traceback}")
        kill_process_tree(os.getpid())
Zilin Zhu's avatar
Zilin Zhu committed
1455
        return False
1456
1457

    # Debug print
1458
    # logger.info(f"warmup request returns: {res.json()=}")
Zilin Zhu's avatar
Zilin Zhu committed
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
    return success


def _wait_and_warmup(
    server_args: ServerArgs,
    pipe_finish_writer: Optional[multiprocessing.connection.Connection],
    launch_callback: Optional[Callable[[], None]] = None,
):
    if not server_args.skip_server_warmup:
        if not _execute_server_warmup(
            server_args,
            pipe_finish_writer,
        ):
            return
1473
1474
    else:
        _global_state.tokenizer_manager.server_status = ServerStatus.Up
1475
1476

    logger.info("The server is fired up and ready to roll!")
1477

1478
1479
1480
1481
1482
    if pipe_finish_writer is not None:
        pipe_finish_writer.send("ready")

    if server_args.delete_ckpt_after_loading:
        delete_directory(server_args.model_path)
1483
1484
1485
1486
1487
1488

    if server_args.debug_tensor_dump_input_file:
        kill_process_tree(os.getpid())

    if launch_callback is not None:
        launch_callback()