http_server.py 43.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
The entry point of inference server. (SRT = SGLang Runtime)

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
17
This file implements HTTP APIs for the inference engine via fastapi.
18
19
20
21
"""

import asyncio
import dataclasses
22
import json
23
24
25
26
27
28
import logging
import multiprocessing as multiprocessing
import os
import threading
import time
from http import HTTPStatus
Lianmin Zheng's avatar
Lianmin Zheng committed
29
from typing import Any, AsyncIterator, Callable, Dict, List, Optional
30
31
32
33

# Fix a bug of Python threading
setattr(threading, "_register_atexit", lambda *args, **kwargs: None)

34
from contextlib import asynccontextmanager
35
from typing import AsyncGenerator
36
37

import numpy as np
38
39
40
41
import orjson
import requests
import uvicorn
import uvloop
42
from fastapi import Depends, FastAPI, HTTPException, Request, UploadFile
43
from fastapi.exceptions import RequestValidationError
44
45
46
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import ORJSONResponse, Response, StreamingResponse

47
from sglang.srt.disaggregation.utils import (
Byron Hsu's avatar
Byron Hsu committed
48
    FAKE_BOOTSTRAP_HOST,
49
    DisaggregationMode,
50
51
    register_disaggregation_server,
)
52
from sglang.srt.entrypoints.engine import _launch_subprocesses
53
54
55
56
from sglang.srt.entrypoints.openai.protocol import (
    ChatCompletionRequest,
    CompletionRequest,
    EmbeddingRequest,
57
    ErrorResponse,
58
59
    ModelCard,
    ModelList,
60
    ResponsesRequest,
61
62
63
64
65
66
67
68
    ScoringRequest,
    V1RerankReqInput,
)
from sglang.srt.entrypoints.openai.serving_chat import OpenAIServingChat
from sglang.srt.entrypoints.openai.serving_completions import OpenAIServingCompletion
from sglang.srt.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
from sglang.srt.entrypoints.openai.serving_rerank import OpenAIServingRerank
from sglang.srt.entrypoints.openai.serving_score import OpenAIServingScore
69
from sglang.srt.function_call.function_call_parser import FunctionCallParser
70
from sglang.srt.managers.io_struct import (
Lianmin Zheng's avatar
Lianmin Zheng committed
71
    AbortReq,
72
73
74
75
76
77
    CloseSessionReqInput,
    ConfigureLoggingReq,
    EmbeddingReqInput,
    GenerateReqInput,
    GetWeightsByNameReqInput,
    InitWeightsUpdateGroupReqInput,
78
    LoadLoRAAdapterReqInput,
79
    OpenSessionReqInput,
80
    ParseFunctionCallReq,
81
    ProfileReqInput,
82
83
    ReleaseMemoryOccupationReqInput,
    ResumeMemoryOccupationReqInput,
Xihuai Wang's avatar
Xihuai Wang committed
84
    SeparateReasoningReqInput,
85
    SetInternalStateReq,
86
    SlowDownReqInput,
87
    UnloadLoRAAdapterReqInput,
88
89
    UpdateWeightFromDiskReqInput,
    UpdateWeightsFromDistributedReqInput,
90
    UpdateWeightsFromTensorReqInput,
91
    UpdateWeightVersionReqInput,
92
    VertexGenerateReqInput,
93
)
94
from sglang.srt.managers.template_manager import TemplateManager
95
from sglang.srt.managers.tokenizer_manager import ServerStatus, TokenizerManager
96
from sglang.srt.metrics.func_timer import enable_func_timer
Xihuai Wang's avatar
Xihuai Wang committed
97
from sglang.srt.reasoning_parser import ReasoningParser
98
from sglang.srt.server_args import ServerArgs
99
100
101
102
from sglang.srt.utils import (
    add_api_key_middleware,
    add_prometheus_middleware,
    delete_directory,
103
    get_bool_env_var,
104
105
106
    kill_process_tree,
    set_uvicorn_logging_configs,
)
107
from sglang.srt.warmup import execute_warmups
108
109
110
111
112
113
from sglang.utils import get_exception_traceback
from sglang.version import __version__

logger = logging.getLogger(__name__)
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())

114
115
HEALTH_CHECK_TIMEOUT = int(os.getenv("SGLANG_HEALTH_CHECK_TIMEOUT", 20))

116
117
118
119

# Store global states
@dataclasses.dataclass
class _GlobalState:
120
    tokenizer_manager: TokenizerManager
121
    template_manager: TemplateManager
122
123
124
125
126
127
128
129
130
131
132
    scheduler_info: Dict


_global_state: Optional[_GlobalState] = None


def set_global_state(global_state: _GlobalState):
    global _global_state
    _global_state = global_state


133
134
@asynccontextmanager
async def lifespan(fast_api_app: FastAPI):
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    # Initialize OpenAI serving handlers
    fast_api_app.state.openai_serving_completion = OpenAIServingCompletion(
        _global_state.tokenizer_manager, _global_state.template_manager
    )
    fast_api_app.state.openai_serving_chat = OpenAIServingChat(
        _global_state.tokenizer_manager, _global_state.template_manager
    )
    fast_api_app.state.openai_serving_embedding = OpenAIServingEmbedding(
        _global_state.tokenizer_manager, _global_state.template_manager
    )
    fast_api_app.state.openai_serving_score = OpenAIServingScore(
        _global_state.tokenizer_manager
    )
    fast_api_app.state.openai_serving_rerank = OpenAIServingRerank(
        _global_state.tokenizer_manager
    )

152
    server_args: ServerArgs = fast_api_app.server_args
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

    tool_server = None
    if server_args.tool_server == "demo":
        from sglang.srt.entrypoints.openai.tool_server import DemoToolServer

        tool_server = DemoToolServer()
    elif server_args.tool_server:
        from sglang.srt.entrypoints.openai.tool_server import MCPToolServer

        tool_server = MCPToolServer()
        await tool_server.add_tool_server(server_args.tool_server)

    try:
        from sglang.srt.entrypoints.openai.serving_responses import (
            OpenAIServingResponses,
        )

        fast_api_app.state.openai_serving_responses = OpenAIServingResponses(
            _global_state.tokenizer_manager,
            _global_state.template_manager,
            enable_prompt_tokens_details=True,
            enable_force_include_usage=True,
            tool_server=tool_server,
        )
    except Exception as e:
        import traceback

        traceback.print_exc()
        logger.warning(f"Can not initialize OpenAIServingResponses, error: {e}")

183
184
    if server_args.warmups is not None:
        await execute_warmups(
185
186
187
            server_args.disaggregation_mode,
            server_args.warmups.split(","),
            _global_state.tokenizer_manager,
188
189
190
191
192
193
        )
        logger.info("Warmup ended")

    warmup_thread = getattr(fast_api_app, "warmup_thread", None)
    if warmup_thread is not None:
        warmup_thread.start()
194
    yield
195
196
197


# Fast API
198
199
200
201
app = FastAPI(
    lifespan=lifespan,
    openapi_url=None if get_bool_env_var("DISABLE_OPENAPI_DOC") else "/openapi.json",
)
202
203
204
205
206
207
208
209
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

210

211
212
213
214
215
216
217
218
219
220
221
222
@app.exception_handler(HTTPException)
async def validation_exception_handler(request: Request, exc: HTTPException):
    """Enrich HTTP exception with status code and other details"""
    error = ErrorResponse(
        object="error",
        message=exc.detail,
        type=str(exc.status_code),
        code=exc.status_code,
    )
    return ORJSONResponse(content=error.model_dump(), status_code=exc.status_code)


223
224
225
226
# Custom exception handlers to change validation error status codes
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request: Request, exc: RequestValidationError):
    """Override FastAPI's default 422 validation error with 400"""
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    exc_str = str(exc)
    errors_str = str(exc.errors())

    if errors_str and errors_str != exc_str:
        message = f"{exc_str} {errors_str}"
    else:
        message = exc_str

    err = ErrorResponse(
        message=message,
        type=HTTPStatus.BAD_REQUEST.phrase,
        code=HTTPStatus.BAD_REQUEST.value,
    )

241
242
    return ORJSONResponse(
        status_code=400,
243
        content=err.model_dump(),
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    )


async def validate_json_request(raw_request: Request):
    """Validate that the request content-type is application/json."""
    content_type = raw_request.headers.get("content-type", "").lower()
    media_type = content_type.split(";", maxsplit=1)[0]
    if media_type != "application/json":
        raise RequestValidationError(
            errors=[
                {
                    "loc": ["header", "content-type"],
                    "msg": "Unsupported Media Type: Only 'application/json' is allowed",
                    "type": "value_error",
                }
            ]
        )


263
264
265
266
267
268
##### Native API endpoints #####


@app.get("/health")
@app.get("/health_generate")
async def health_generate(request: Request) -> Response:
269
270
271
272
273
274
275
    """
    Check the health of the inference server by sending a special request to generate one token.

    If the server is running something, this request will be ignored, so it creates zero overhead.
    If the server is not running anything, this request will be run, so we know whether the server is healthy.
    """

276
277
278
    if _global_state.tokenizer_manager.gracefully_exit:
        logger.info("Health check request received during shutdown. Returning 503.")
        return Response(status_code=503)
279

Lianmin Zheng's avatar
Lianmin Zheng committed
280
    if _global_state.tokenizer_manager.server_status == ServerStatus.Starting:
281
282
        return Response(status_code=503)

283
284
    sampling_params = {"max_new_tokens": 1, "temperature": 0.0}
    rid = f"HEALTH_CHECK_{time.time()}"
285

286
    if _global_state.tokenizer_manager.is_image_gen:
287
288
        # Keep this branch for some internal use cases.
        raise NotImplementedError("Image generation is not supported yet.")
289
    elif _global_state.tokenizer_manager.is_generation:
290
        gri = GenerateReqInput(
291
292
293
294
            rid=rid,
            input_ids=[0],
            sampling_params=sampling_params,
            log_metrics=False,
295
        )
296
297
298
299
300
301
        if (
            _global_state.tokenizer_manager.server_args.disaggregation_mode
            != DisaggregationMode.NULL
        ):
            gri.bootstrap_host = FAKE_BOOTSTRAP_HOST
            gri.bootstrap_room = 0
302
303
    else:
        gri = EmbeddingReqInput(
304
            rid=rid, input_ids=[0], sampling_params=sampling_params, log_metrics=False
305
306
        )

307
    async def gen():
308
        async for _ in _global_state.tokenizer_manager.generate_request(gri, request):
309
            break
310
311

    task = asyncio.create_task(gen())
312
313
314
315

    # As long as we receive any response from the detokenizer/scheduler, we consider the server is healthy.
    tic = time.time()
    while time.time() < tic + HEALTH_CHECK_TIMEOUT:
316
317
318
319
        await asyncio.sleep(1)
        if _global_state.tokenizer_manager.last_receive_tstamp > tic:
            task.cancel()
            _global_state.tokenizer_manager.rid_to_state.pop(rid, None)
Lianmin Zheng's avatar
Lianmin Zheng committed
320
            _global_state.tokenizer_manager.server_status = ServerStatus.Up
321
322
323
324
325
326
327
328
329
330
331
332
333
            return Response(status_code=200)

    task.cancel()
    tic_time = time.strftime("%H:%M:%S", time.localtime(tic))
    last_receive_time = time.strftime(
        "%H:%M:%S", time.localtime(_global_state.tokenizer_manager.last_receive_tstamp)
    )
    logger.error(
        f"Health check failed. Server couldn't get a response from detokenizer for last "
        f"{HEALTH_CHECK_TIMEOUT} seconds. tic start time: {tic_time}. "
        f"last_heartbeat time: {last_receive_time}"
    )
    _global_state.tokenizer_manager.rid_to_state.pop(rid, None)
Lianmin Zheng's avatar
Lianmin Zheng committed
334
    _global_state.tokenizer_manager.server_status = ServerStatus.UnHealthy
335
    return Response(status_code=503)
336
337
338
339
340
341


@app.get("/get_model_info")
async def get_model_info():
    """Get the model information."""
    result = {
342
343
344
        "model_path": _global_state.tokenizer_manager.model_path,
        "tokenizer_path": _global_state.tokenizer_manager.server_args.tokenizer_path,
        "is_generation": _global_state.tokenizer_manager.is_generation,
345
        "preferred_sampling_params": _global_state.tokenizer_manager.server_args.preferred_sampling_params,
346
        "weight_version": _global_state.tokenizer_manager.server_args.weight_version,
347
348
349
350
    }
    return result


351
352
353
354
355
356
357
358
@app.get("/get_weight_version")
async def get_weight_version():
    """Get the current weight version."""
    return {
        "weight_version": _global_state.tokenizer_manager.server_args.weight_version
    }


359
360
@app.get("/get_server_info")
async def get_server_info():
361
362
363
364
    # Returns interna states per DP.
    internal_states: List[Dict[Any, Any]] = (
        await _global_state.tokenizer_manager.get_internal_state()
    )
365
    return {
366
        **dataclasses.asdict(_global_state.tokenizer_manager.server_args),
367
        **_global_state.scheduler_info,
368
        "internal_states": internal_states,
369
370
371
372
        "version": __version__,
    }


Liangsheng Yin's avatar
Liangsheng Yin committed
373
374
375
376
377
@app.get("/get_load")
async def get_load():
    return await _global_state.tokenizer_manager.get_load()


378
379
# example usage:
# curl -s -X POST http://localhost:30000/set_internal_state -H "Content-Type: application/json" -d '{"server_args": {"max_micro_batch_size": 8}}'
380
381
382
383
384
385
@app.api_route("/set_internal_state", methods=["POST", "PUT"])
async def set_internal_state(obj: SetInternalStateReq, request: Request):
    res = await _global_state.tokenizer_manager.set_internal_state(obj)
    return res


386
387
388
389
390
391
392
393
# fastapi implicitly converts json in the request to obj (dataclass)
@app.api_route("/generate", methods=["POST", "PUT"])
async def generate_request(obj: GenerateReqInput, request: Request):
    """Handle a generate request."""
    if obj.stream:

        async def stream_results() -> AsyncIterator[bytes]:
            try:
394
                async for out in _global_state.tokenizer_manager.generate_request(
395
396
397
398
399
400
401
                    obj, request
                ):
                    yield b"data: " + orjson.dumps(
                        out, option=orjson.OPT_NON_STR_KEYS
                    ) + b"\n\n"
            except ValueError as e:
                out = {"error": {"message": str(e)}}
402
                logger.error(f"[http_server] Error: {e}")
403
404
405
406
407
408
409
410
                yield b"data: " + orjson.dumps(
                    out, option=orjson.OPT_NON_STR_KEYS
                ) + b"\n\n"
            yield b"data: [DONE]\n\n"

        return StreamingResponse(
            stream_results(),
            media_type="text/event-stream",
411
            background=_global_state.tokenizer_manager.create_abort_task(obj),
412
413
414
        )
    else:
        try:
415
            ret = await _global_state.tokenizer_manager.generate_request(
416
417
418
419
                obj, request
            ).__anext__()
            return ret
        except ValueError as e:
420
            logger.error(f"[http_server] Error: {e}")
421
422
423
            return _create_error_response(e)


424
425
426
427
428
429
430
431
432
@app.api_route("/generate_from_file", methods=["POST"])
async def generate_from_file_request(file: UploadFile, request: Request):
    """Handle a generate request, this is purely to work with input_embeds."""
    content = await file.read()
    input_embeds = json.loads(content.decode("utf-8"))

    obj = GenerateReqInput(
        input_embeds=input_embeds,
        sampling_params={
433
            "temperature": 0.0,
434
435
436
437
438
            "max_new_tokens": 512,
        },
    )

    try:
439
440
441
        ret = await _global_state.tokenizer_manager.generate_request(
            obj, request
        ).__anext__()
442
443
444
445
446
447
        return ret
    except ValueError as e:
        logger.error(f"Error: {e}")
        return _create_error_response(e)


448
449
450
451
@app.api_route("/encode", methods=["POST", "PUT"])
async def encode_request(obj: EmbeddingReqInput, request: Request):
    """Handle an embedding request."""
    try:
452
        ret = await _global_state.tokenizer_manager.generate_request(
453
454
455
456
457
458
459
460
461
462
463
            obj, request
        ).__anext__()
        return ret
    except ValueError as e:
        return _create_error_response(e)


@app.api_route("/classify", methods=["POST", "PUT"])
async def classify_request(obj: EmbeddingReqInput, request: Request):
    """Handle a reward model request. Now the arguments and return values are the same as embedding models."""
    try:
464
        ret = await _global_state.tokenizer_manager.generate_request(
465
466
467
468
469
470
471
            obj, request
        ).__anext__()
        return ret
    except ValueError as e:
        return _create_error_response(e)


472
@app.api_route("/flush_cache", methods=["GET", "POST"])
473
474
async def flush_cache():
    """Flush the radix cache."""
475
    ret = await _global_state.tokenizer_manager.flush_cache()
476
477
478
    return Response(
        content="Cache flushed.\nPlease check backend logs for more details. "
        "(When there are running or waiting requests, the operation will not be performed.)\n",
479
        status_code=200 if ret.success else HTTPStatus.BAD_REQUEST,
480
481
482
    )


483
484
485
486
487
488
489
490
491
492
@app.api_route("/clear_hicache_storage_backend", methods=["GET", "POST"])
async def clear_hicache_storage_backend():
    """Clear the hierarchical cache storage backend."""
    ret = await _global_state.tokenizer_manager.clear_hicache_storage()
    return Response(
        content="Hierarchical cache storage backend cleared.\n",
        status_code=200 if ret.success else HTTPStatus.BAD_REQUEST,
    )


493
@app.api_route("/start_profile", methods=["GET", "POST"])
494
async def start_profile_async(obj: Optional[ProfileReqInput] = None):
495
    """Start profiling."""
496
497
498
499
    if obj is None:
        obj = ProfileReqInput()

    await _global_state.tokenizer_manager.start_profile(
500
        output_dir=obj.output_dir,
501
        start_step=obj.start_step,
502
503
504
505
        num_steps=obj.num_steps,
        activities=obj.activities,
        with_stack=obj.with_stack,
        record_shapes=obj.record_shapes,
506
        profile_by_stage=obj.profile_by_stage,
507
    )
508
509
510
511
512
513
514
515
516
    return Response(
        content="Start profiling.\n",
        status_code=200,
    )


@app.api_route("/stop_profile", methods=["GET", "POST"])
async def stop_profile_async():
    """Stop profiling."""
517
    await _global_state.tokenizer_manager.stop_profile()
518
519
520
521
522
523
    return Response(
        content="Stop profiling. This will take some time.\n",
        status_code=200,
    )


524
525
526
527
528
529
530
531
532
533
534
535
@app.api_route("/freeze_gc", methods=["GET", "POST"])
async def freeze_gc_async():
    """
    See engine.freeze_gc for more details.
    """
    await _global_state.tokenizer_manager.freeze_gc()
    return Response(
        content="Garbage collection frozen.\n",
        status_code=200,
    )


536
537
538
@app.api_route("/start_expert_distribution_record", methods=["GET", "POST"])
async def start_expert_distribution_record_async():
    """Start recording the expert distribution. Clear the previous record if any."""
539
    await _global_state.tokenizer_manager.start_expert_distribution_record()
540
541
542
543
544
545
546
547
548
    return Response(
        content="Start recording the expert distribution.\n",
        status_code=200,
    )


@app.api_route("/stop_expert_distribution_record", methods=["GET", "POST"])
async def stop_expert_distribution_record_async():
    """Stop recording the expert distribution."""
549
    await _global_state.tokenizer_manager.stop_expert_distribution_record()
550
551
552
553
554
555
556
557
558
    return Response(
        content="Stop recording the expert distribution.\n",
        status_code=200,
    )


@app.api_route("/dump_expert_distribution_record", methods=["GET", "POST"])
async def dump_expert_distribution_record_async():
    """Dump expert distribution record."""
559
    await _global_state.tokenizer_manager.dump_expert_distribution_record()
560
561
562
563
564
565
    return Response(
        content="Dump expert distribution record.\n",
        status_code=200,
    )


566
567
@app.post("/update_weights_from_disk")
async def update_weights_from_disk(obj: UpdateWeightFromDiskReqInput, request: Request):
568
569
570
    """Update the weights from disk inplace without re-launching the server."""
    success, message, num_paused_requests = (
        await _global_state.tokenizer_manager.update_weights_from_disk(obj, request)
571
    )
572
573
574
575
576
577

    # Update weight version if provided and weights update was successful
    if success and obj.weight_version is not None:
        _update_weight_version_if_provided(obj.weight_version)
        message += f" Weight version updated to {obj.weight_version}."

578
579
580
581
582
    content = {
        "success": success,
        "message": message,
        "num_paused_requests": num_paused_requests,
    }
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
    if success:
        return ORJSONResponse(
            content,
            status_code=HTTPStatus.OK,
        )
    else:
        return ORJSONResponse(
            content,
            status_code=HTTPStatus.BAD_REQUEST,
        )


@app.post("/init_weights_update_group")
async def init_weights_update_group(
    obj: InitWeightsUpdateGroupReqInput, request: Request
):
    """Initialize the parameter update group."""
600
    success, message = await _global_state.tokenizer_manager.init_weights_update_group(
601
602
603
604
605
606
607
608
609
        obj, request
    )
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


610
611
612
613
614
615
616
617
618
619
620
621
622
623
@app.post("/update_weights_from_tensor")
async def update_weights_from_tensor(
    obj: UpdateWeightsFromTensorReqInput, request: Request
):
    """Update the weights from tensor inplace without re-launching the server.
    Notes:
    1. Ensure that the model is on the correct device (e.g., GPU) before calling this endpoint. If the model is moved to the CPU unexpectedly, it may cause performance issues or runtime errors.
    2. HTTP will transmit only the metadata of the tensor, while the tensor itself will be directly copied to the model.
    3. Any binary data in the named tensors should be base64 encoded.
    """

    success, message = await _global_state.tokenizer_manager.update_weights_from_tensor(
        obj, request
    )
624
625
626
627
628
629

    # Update weight version if provided and weights update was successful
    if success and obj.weight_version is not None:
        _update_weight_version_if_provided(obj.weight_version)
        message += f" Weight version updated to {obj.weight_version}."

630
631
632
633
634
635
    content = {"success": success, "message": message}
    return ORJSONResponse(
        content, status_code=200 if success else HTTPStatus.BAD_REQUEST
    )


636
637
638
639
640
@app.post("/update_weights_from_distributed")
async def update_weights_from_distributed(
    obj: UpdateWeightsFromDistributedReqInput, request: Request
):
    """Update model parameter from distributed online."""
641
642
643
644
    success, message = (
        await _global_state.tokenizer_manager.update_weights_from_distributed(
            obj, request
        )
645
    )
646
647
648
649
650
651

    # Update weight version if provided and weights update was successful
    if success and obj.weight_version is not None:
        _update_weight_version_if_provided(obj.weight_version)
        message += f" Weight version updated to {obj.weight_version}."

652
653
654
655
656
657
658
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
@app.post("/update_weight_version")
async def update_weight_version(obj: UpdateWeightVersionReqInput, request: Request):
    """Update the weight version. This operation requires no active requests."""
    if obj.abort_all_requests:
        _global_state.tokenizer_manager.abort_request(abort_all=True)

    # Use a simple approach without the complex lock mechanism for now
    # since weight_version update is a simple operation that doesn't affect model weights
    try:
        # Update the weight version in server args (the single source of truth)
        _global_state.tokenizer_manager.server_args.weight_version = obj.new_version

        return ORJSONResponse(
            {
                "success": True,
                "message": f"Weight version updated to {obj.new_version}",
                "new_version": obj.new_version,
            },
            status_code=HTTPStatus.OK,
        )
    except Exception as e:
        return ORJSONResponse(
            {
                "success": False,
                "message": f"Failed to update weight version: {str(e)}",
            },
            status_code=HTTPStatus.BAD_REQUEST,
        )


689
690
691
692
@app.api_route("/get_weights_by_name", methods=["GET", "POST"])
async def get_weights_by_name(obj: GetWeightsByNameReqInput, request: Request):
    """Get model parameter by name."""
    try:
693
        ret = await _global_state.tokenizer_manager.get_weights_by_name(obj, request)
694
695
696
697
698
699
700
701
702
703
704
705
        if ret is None:
            return _create_error_response("Get parameter by name failed")
        else:
            return ORJSONResponse(ret, status_code=200)
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/release_memory_occupation", methods=["GET", "POST"])
async def release_memory_occupation(
    obj: ReleaseMemoryOccupationReqInput, request: Request
):
706
    """Release GPU memory occupation temporarily."""
707
    try:
708
        await _global_state.tokenizer_manager.release_memory_occupation(obj, request)
709
710
711
712
713
714
715
716
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/resume_memory_occupation", methods=["GET", "POST"])
async def resume_memory_occupation(
    obj: ResumeMemoryOccupationReqInput, request: Request
):
717
    """Resume GPU memory occupation."""
718
    try:
719
        await _global_state.tokenizer_manager.resume_memory_occupation(obj, request)
720
721
722
723
    except Exception as e:
        return _create_error_response(e)


724
725
726
727
728
729
730
731
732
733
734
735
736
@app.api_route("/slow_down", methods=["GET", "POST"])
async def slow_down(obj: SlowDownReqInput, request: Request):
    """Slow down the system deliberately. Only for testing. Example scenario:
    when we want to test performance of D in large-scale PD disaggregation and have no enough nodes for P,
    we can use this to slow down D to let it have enough running sequences, and then disable slowdown
    to let it run in full batch size.
    """
    try:
        await _global_state.tokenizer_manager.slow_down(obj, request)
    except Exception as e:
        return _create_error_response(e)


737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
@app.api_route("/load_lora_adapter", methods=["POST"])
async def load_lora_adapter(obj: LoadLoRAAdapterReqInput, request: Request):
    """Load a new LoRA adapter without re-launching the server."""
    result = await _global_state.tokenizer_manager.load_lora_adapter(obj, request)

    if result.success:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.OK,
        )
    else:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.BAD_REQUEST,
        )


@app.api_route("/unload_lora_adapter", methods=["POST"])
async def unload_lora_adapter(obj: UnloadLoRAAdapterReqInput, request: Request):
    """Load a new LoRA adapter without re-launching the server."""
    result = await _global_state.tokenizer_manager.unload_lora_adapter(obj, request)

    if result.success:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.OK,
        )
    else:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.BAD_REQUEST,
        )


771
772
773
774
@app.api_route("/open_session", methods=["GET", "POST"])
async def open_session(obj: OpenSessionReqInput, request: Request):
    """Open a session, and return its unique session id."""
    try:
775
        session_id = await _global_state.tokenizer_manager.open_session(obj, request)
776
777
778
779
780
781
782
783
784
785
786
        if session_id is None:
            raise Exception(
                "Failed to open the session. Check if a session with the same id is still open."
            )
        return session_id
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/close_session", methods=["GET", "POST"])
async def close_session(obj: CloseSessionReqInput, request: Request):
787
    """Close the session."""
788
    try:
789
        await _global_state.tokenizer_manager.close_session(obj, request)
790
791
792
793
794
795
796
        return Response(status_code=200)
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/configure_logging", methods=["GET", "POST"])
async def configure_logging(obj: ConfigureLoggingReq, request: Request):
797
    """Configure the request logging options."""
798
    _global_state.tokenizer_manager.configure_logging(obj)
799
800
801
    return Response(status_code=200)


Lianmin Zheng's avatar
Lianmin Zheng committed
802
803
804
805
@app.post("/abort_request")
async def abort_request(obj: AbortReq, request: Request):
    """Abort a request."""
    try:
806
807
808
        _global_state.tokenizer_manager.abort_request(
            rid=obj.rid, abort_all=obj.abort_all
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
809
810
811
812
813
        return Response(status_code=200)
    except Exception as e:
        return _create_error_response(e)


814
815
@app.post("/parse_function_call")
async def parse_function_call_request(obj: ParseFunctionCallReq, request: Request):
YAMY's avatar
YAMY committed
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
    """
    A native API endpoint to parse function calls from a text.
    """
    # 1) Initialize the parser based on the request body
    parser = FunctionCallParser(tools=obj.tools, tool_call_parser=obj.tool_call_parser)

    # 2) Call the non-stream parsing method (non-stream)
    normal_text, calls = parser.parse_non_stream(obj.text)

    # 3) Organize the response content
    response_data = {
        "normal_text": normal_text,
        "calls": [
            call.model_dump() for call in calls
        ],  # Convert pydantic objects to dictionaries
    }

    return ORJSONResponse(content=response_data, status_code=200)


Xihuai Wang's avatar
Xihuai Wang committed
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
@app.post("/separate_reasoning")
async def separate_reasoning_request(obj: SeparateReasoningReqInput, request: Request):
    """
    A native API endpoint to separate reasoning from a text.
    """
    # 1) Initialize the parser based on the request body
    parser = ReasoningParser(model_type=obj.reasoning_parser)

    # 2) Call the non-stream parsing method (non-stream)
    reasoning_text, normal_text = parser.parse_non_stream(obj.text)

    # 3) Organize the response content
    response_data = {
        "reasoning_text": reasoning_text,
        "text": normal_text,
    }

    return ORJSONResponse(content=response_data, status_code=200)


856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
@app.post("/pause_generation")
async def pause_generation(request: Request):
    """Pause generation."""
    await _global_state.tokenizer_manager.pause_generation()
    return ORJSONResponse(
        content={"message": "Generation paused successfully.", "status": "ok"},
        status_code=200,
    )


@app.post("/continue_generation")
async def continue_generation(request: Request):
    """Continue generation."""
    await _global_state.tokenizer_manager.continue_generation()
    return ORJSONResponse(
        content={"message": "Generation continued successfully.", "status": "ok"},
        status_code=200,
    )


876
877
878
##### OpenAI-compatible API endpoints #####


879
880
881
882
883
884
@app.post("/v1/completions", dependencies=[Depends(validate_json_request)])
async def openai_v1_completions(request: CompletionRequest, raw_request: Request):
    """OpenAI-compatible text completion endpoint."""
    return await raw_request.app.state.openai_serving_completion.handle_request(
        request, raw_request
    )
885
886


887
888
889
890
891
892
893
894
@app.post("/v1/chat/completions", dependencies=[Depends(validate_json_request)])
async def openai_v1_chat_completions(
    request: ChatCompletionRequest, raw_request: Request
):
    """OpenAI-compatible chat completion endpoint."""
    return await raw_request.app.state.openai_serving_chat.handle_request(
        request, raw_request
    )
895
896


897
898
899
900
901
902
903
904
905
906
@app.post(
    "/v1/embeddings",
    response_class=ORJSONResponse,
    dependencies=[Depends(validate_json_request)],
)
async def openai_v1_embeddings(request: EmbeddingRequest, raw_request: Request):
    """OpenAI-compatible embeddings endpoint."""
    return await raw_request.app.state.openai_serving_embedding.handle_request(
        request, raw_request
    )
907
908
909


@app.get("/v1/models", response_class=ORJSONResponse)
910
911
async def available_models():
    """Show available models. OpenAI-compatible endpoint."""
912
    served_model_names = [_global_state.tokenizer_manager.served_model_name]
913
914
    model_cards = []
    for served_model_name in served_model_names:
915
916
917
918
919
920
921
        model_cards.append(
            ModelCard(
                id=served_model_name,
                root=served_model_name,
                max_model_len=_global_state.tokenizer_manager.model_config.context_len,
            )
        )
922
923
924
    return ModelList(data=model_cards)


925
926
927
928
@app.get("/v1/models/{model:path}", response_class=ORJSONResponse)
async def retrieve_model(model: str):
    """Retrieves a model instance, providing basic information about the model."""
    served_model_names = [_global_state.tokenizer_manager.served_model_name]
929

930
931
932
933
934
935
936
937
938
939
940
941
    if model not in served_model_names:
        return ORJSONResponse(
            status_code=404,
            content={
                "error": {
                    "message": f"The model '{model}' does not exist",
                    "type": "invalid_request_error",
                    "param": "model",
                    "code": "model_not_found",
                }
            },
        )
942

943
944
945
946
947
    return ModelCard(
        id=model,
        root=model,
        max_model_len=_global_state.tokenizer_manager.model_config.context_len,
    )
948
949


950
951
952
953
954
955
956
957
@app.post("/v1/score", dependencies=[Depends(validate_json_request)])
async def v1_score_request(request: ScoringRequest, raw_request: Request):
    """Endpoint for the decoder-only scoring API. See Engine.score() for detailed documentation."""
    return await raw_request.app.state.openai_serving_score.handle_request(
        request, raw_request
    )


958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
@app.post("/v1/responses", dependencies=[Depends(validate_json_request)])
async def v1_responses_request(request: dict, raw_request: Request):
    """Endpoint for the responses API with reasoning support."""

    request_obj = ResponsesRequest(**request)
    result = await raw_request.app.state.openai_serving_responses.create_responses(
        request_obj, raw_request
    )

    # Handle streaming responses
    if isinstance(result, AsyncGenerator):
        return StreamingResponse(
            result,
            media_type="text/event-stream",
            headers={"Cache-Control": "no-cache", "Connection": "keep-alive"},
        )

    return result


@app.get("/v1/responses/{response_id}")
async def v1_retrieve_responses(response_id: str, raw_request: Request):
    """Retrieve a response by ID."""
    return await raw_request.app.state.openai_serving_responses.retrieve_responses(
        response_id
    )


@app.post("/v1/responses/{response_id}/cancel")
async def v1_cancel_responses(response_id: str, raw_request: Request):
    """Cancel a background response."""
    return await raw_request.app.state.openai_serving_responses.cancel_responses(
        response_id
    )


994
995
996
997
998
999
1000
1001
1002
1003
@app.api_route(
    "/v1/rerank", methods=["POST", "PUT"], dependencies=[Depends(validate_json_request)]
)
async def v1_rerank_request(request: V1RerankReqInput, raw_request: Request):
    """Endpoint for reranking documents based on query relevance."""
    return await raw_request.app.state.openai_serving_rerank.handle_request(
        request, raw_request
    )


1004
1005
1006
1007
1008
1009
1010
1011
## SageMaker API
@app.get("/ping")
async def sagemaker_health() -> Response:
    """Check the health of the http server."""
    return Response(status_code=200)


@app.post("/invocations")
1012
1013
1014
1015
1016
1017
1018
async def sagemaker_chat_completions(
    request: ChatCompletionRequest, raw_request: Request
):
    """OpenAI-compatible chat completion endpoint."""
    return await raw_request.app.state.openai_serving_chat.handle_request(
        request, raw_request
    )
1019
1020


1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
## Vertex AI API
@app.post(os.environ.get("AIP_PREDICT_ROUTE", "/vertex_generate"))
async def vertex_generate(vertex_req: VertexGenerateReqInput, raw_request: Request):
    if not vertex_req.instances:
        return []
    inputs = {}
    for input_key in ("text", "input_ids", "input_embeds"):
        if vertex_req.instances[0].get(input_key):
            inputs[input_key] = [
                instance.get(input_key) for instance in vertex_req.instances
            ]
            break
    image_data = [
        instance.get("image_data")
        for instance in vertex_req.instances
        if instance.get("image_data") is not None
    ] or None
    req = GenerateReqInput(
        **inputs,
        image_data=image_data,
        **(vertex_req.parameters or {}),
    )
    ret = await generate_request(req, raw_request)
1044
1045
    if isinstance(ret, Response):
        return ret
1046
1047
1048
    return ORJSONResponse({"predictions": ret})


1049
1050
1051
1052
1053
1054
def _update_weight_version_if_provided(weight_version: Optional[str]) -> None:
    """Update weight version if provided."""
    if weight_version is not None:
        _global_state.tokenizer_manager.server_args.weight_version = weight_version


1055
1056
1057
1058
1059
1060
1061
1062
1063
def _create_error_response(e):
    return ORJSONResponse(
        {"error": {"message": str(e)}}, status_code=HTTPStatus.BAD_REQUEST
    )


def launch_server(
    server_args: ServerArgs,
    pipe_finish_writer: Optional[multiprocessing.connection.Connection] = None,
1064
    launch_callback: Optional[Callable[[], None]] = None,
1065
1066
1067
1068
1069
1070
1071
1072
):
    """
    Launch SRT (SGLang Runtime) Server.

    The SRT server consists of an HTTP server and an SRT engine.

    - HTTP server: A FastAPI server that routes requests to the engine.
    - The engine consists of three components:
1073
        1. TokenizerManager: Tokenizes the requests and sends them to the scheduler.
1074
1075
1076
1077
        2. Scheduler (subprocess): Receives requests from the Tokenizer Manager, schedules batches, forwards them, and sends the output tokens to the Detokenizer Manager.
        3. DetokenizerManager (subprocess): Detokenizes the output tokens and sends the result back to the Tokenizer Manager.

    Note:
1078
    1. The HTTP server, Engine, and TokenizerManager both run in the main process.
1079
    2. Inter-process communication is done through IPC (each process uses a different port) via the ZMQ library.
1080
    """
1081
1082
1083
    tokenizer_manager, template_manager, scheduler_info = _launch_subprocesses(
        server_args=server_args
    )
1084
1085
    set_global_state(
        _GlobalState(
1086
            tokenizer_manager=tokenizer_manager,
1087
            template_manager=template_manager,
1088
1089
1090
1091
            scheduler_info=scheduler_info,
        )
    )

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
    # Add api key authorization
    if server_args.api_key:
        add_api_key_middleware(app, server_args.api_key)

    # Add prometheus middleware
    if server_args.enable_metrics:
        add_prometheus_middleware(app)
        enable_func_timer()

    # Send a warmup request - we will create the thread launch it
    # in the lifespan after all other warmups have fired.
    warmup_thread = threading.Thread(
        target=_wait_and_warmup,
        args=(
            server_args,
            pipe_finish_writer,
            launch_callback,
        ),
    )
    app.warmup_thread = warmup_thread
1112
1113
1114
1115

    try:
        # Update logging configs
        set_uvicorn_logging_configs()
1116
        app.server_args = server_args
1117
        # Listen for HTTP requests
1118
1119
1120
1121
1122
1123
1124
1125
        uvicorn.run(
            app,
            host=server_args.host,
            port=server_args.port,
            log_level=server_args.log_level_http or server_args.log_level,
            timeout_keep_alive=5,
            loop="uvloop",
        )
1126
    finally:
1127
        warmup_thread.join()
1128
1129


Zilin Zhu's avatar
Zilin Zhu committed
1130
def _execute_server_warmup(
1131
1132
1133
    server_args: ServerArgs,
    pipe_finish_writer: Optional[multiprocessing.connection.Connection],
):
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
    headers = {}
    url = server_args.url()
    if server_args.api_key:
        headers["Authorization"] = f"Bearer {server_args.api_key}"

    # Wait until the server is launched
    success = False
    for _ in range(120):
        time.sleep(1)
        try:
            res = requests.get(url + "/get_model_info", timeout=5, headers=headers)
            assert res.status_code == 200, f"{res=}, {res.text=}"
            success = True
            break
        except (AssertionError, requests.exceptions.RequestException):
            last_traceback = get_exception_traceback()
            pass

    if not success:
        if pipe_finish_writer is not None:
            pipe_finish_writer.send(last_traceback)
        logger.error(f"Initialization failed. warmup error: {last_traceback}")
        kill_process_tree(os.getpid())
Zilin Zhu's avatar
Zilin Zhu committed
1157
        return success
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

    model_info = res.json()

    # Send a warmup request
    request_name = "/generate" if model_info["is_generation"] else "/encode"
    max_new_tokens = 8 if model_info["is_generation"] else 1
    json_data = {
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": max_new_tokens,
        },
    }
    if server_args.skip_tokenizer_init:
fzyzcjy's avatar
fzyzcjy committed
1171
        json_data["input_ids"] = [[10, 11, 12] for _ in range(server_args.dp_size)]
fzyzcjy's avatar
fzyzcjy committed
1172
1173
1174
        # TODO Workaround the bug that embedding errors for list of size 1
        if server_args.dp_size == 1:
            json_data["input_ids"] = json_data["input_ids"][0]
1175
    else:
fzyzcjy's avatar
fzyzcjy committed
1176
        json_data["text"] = ["The capital city of France is"] * server_args.dp_size
fzyzcjy's avatar
fzyzcjy committed
1177
1178
1179
        # TODO Workaround the bug that embedding errors for list of size 1
        if server_args.dp_size == 1:
            json_data["text"] = json_data["text"][0]
1180

1181
1182
1183
1184
1185
1186
1187
1188
    # Debug dumping
    if server_args.debug_tensor_dump_input_file:
        json_data.pop("text", None)
        json_data["input_ids"] = np.load(
            server_args.debug_tensor_dump_input_file
        ).tolist()
        json_data["sampling_params"]["max_new_tokens"] = 0

1189
    try:
1190
1191
1192
1193
1194
1195
1196
        if server_args.disaggregation_mode == "null":
            res = requests.post(
                url + request_name,
                json=json_data,
                headers=headers,
                timeout=600,
            )
1197
            assert res.status_code == 200, f"{res}"
1198
1199
            _global_state.tokenizer_manager.server_status = ServerStatus.Up

1200
        else:
1201
            logger.info(f"Start of pd disaggregation warmup ...")
1202
1203
1204
1205
1206
1207
            json_data = {
                "sampling_params": {
                    "temperature": 0.0,
                    "max_new_tokens": 8,
                    "ignore_eos": True,
                },
Byron Hsu's avatar
Byron Hsu committed
1208
                "bootstrap_host": [FAKE_BOOTSTRAP_HOST] * server_args.dp_size,
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
                # This is a hack to ensure fake transfer is enabled during prefill warmup
                # ensure each dp rank has a unique bootstrap_room during prefill warmup
                "bootstrap_room": [
                    i * (2**63 // server_args.dp_size) + (i % server_args.tp_size)
                    for i in range(server_args.dp_size)
                ],
                "input_ids": [[0, 1, 2, 3]] * server_args.dp_size,
            }
            res = requests.post(
                url + request_name,
                json=json_data,
                headers=headers,
                timeout=1800,  # because of deep gemm precache is very long if not precache.
            )
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
            if res.status_code == 200:
                logger.info(
                    f"End of prefill disaggregation mode warmup with status {res.status_code}, resp: {res.json()}"
                )
                _global_state.tokenizer_manager.server_status = ServerStatus.Up
            else:
                logger.info(
                    "Prefill disaggregation mode warm Up Failed, status code: {}".format(
                        res.status_code
                    )
                )
                _global_state.tokenizer_manager.server_status = ServerStatus.UnHealthy
1235

1236
1237
1238
1239
1240
1241
    except Exception:
        last_traceback = get_exception_traceback()
        if pipe_finish_writer is not None:
            pipe_finish_writer.send(last_traceback)
        logger.error(f"Initialization failed. warmup error: {last_traceback}")
        kill_process_tree(os.getpid())
Zilin Zhu's avatar
Zilin Zhu committed
1242
        return False
1243
1244

    # Debug print
1245
    # logger.info(f"warmup request returns: {res.json()=}")
Zilin Zhu's avatar
Zilin Zhu committed
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
    return success


def _wait_and_warmup(
    server_args: ServerArgs,
    pipe_finish_writer: Optional[multiprocessing.connection.Connection],
    launch_callback: Optional[Callable[[], None]] = None,
):
    if not server_args.skip_server_warmup:
        if not _execute_server_warmup(
            server_args,
            pipe_finish_writer,
        ):
            return
1260
1261
    else:
        _global_state.tokenizer_manager.server_status = ServerStatus.Up
1262
1263

    logger.info("The server is fired up and ready to roll!")
1264

1265
1266
1267
1268
1269
    if pipe_finish_writer is not None:
        pipe_finish_writer.send("ready")

    if server_args.delete_ckpt_after_loading:
        delete_directory(server_args.model_path)
1270
1271
1272
1273

    if server_args.debug_tensor_dump_input_file:
        kill_process_tree(os.getpid())

1274
1275
1276
1277
1278
1279
1280
1281
    if server_args.pdlb_url is not None:
        register_disaggregation_server(
            server_args.disaggregation_mode,
            server_args.port,
            server_args.disaggregation_bootstrap_port,
            server_args.pdlb_url,
        )

1282
1283
    if launch_callback is not None:
        launch_callback()