send_request.ipynb 8.21 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
7
    "# Quick Start: Sending Requests\n",
Chayenne's avatar
Chayenne committed
8
9
10
11
12
    "This notebook provides a quick-start guide to use SGLang in chat completions after installation.\n",
    "\n",
    "- For Vision Language Models, see [OpenAI APIs - Vision](../backend/openai_api_vision.ipynb).\n",
    "- For Embedding Models, see [OpenAI APIs - Embedding](../backend/openai_api_embeddings.ipynb) and [Encode (embedding model)](../backend/native_api.html#Encode-(embedding-model)).\n",
    "- For Reward Models, see [Judge (reward model)](../backend/native_api.html#Judge-(reward-model))."
Chayenne's avatar
Chayenne committed
13
14
15
16
17
18
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
19
20
    "## Launch A Server\n",
    "\n",
Chayenne's avatar
Chayenne committed
21
22
23
24
25
26
27
    "This code block is equivalent to executing \n",
    "\n",
    "```bash\n",
    "python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
    "--port 30000 --host 0.0.0.0\n",
    "```\n",
    "\n",
Chayenne's avatar
Chayenne committed
28
    "in your terminal and wait for the server to be ready. Once the server is running, you can send test requests using curl or requests. The server implements the [OpenAI-compatible APIs](https://platform.openai.com/docs/api-reference/chat)."
Chayenne's avatar
Chayenne committed
29
30
31
32
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
33
   "execution_count": null,
Chayenne's avatar
Chayenne committed
34
35
36
37
38
39
40
41
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:46:13.611212Z",
     "iopub.status.busy": "2024-11-01T02:46:13.611093Z",
     "iopub.status.idle": "2024-11-01T02:46:42.810261Z",
     "shell.execute_reply": "2024-11-01T02:46:42.809147Z"
    }
   },
Chayenne's avatar
Chayenne committed
42
   "outputs": [],
Chayenne's avatar
Chayenne committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
   "source": [
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
    "\n",
    "server_process = execute_shell_command(\n",
    "\"\"\"\n",
    "python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
    "--port 30000 --host 0.0.0.0\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(\"http://localhost:30000\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
65
66
67
68
69
70
71
72
73
74
    "## Using cURL\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import subprocess, json\n",
Chayenne's avatar
Chayenne committed
75
    "\n",
Chayenne's avatar
Chayenne committed
76
77
    "curl_command = \"\"\"\n",
    "curl -s http://localhost:30000/v1/chat/completions \\\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
78
    "  -d '{\"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\", \"messages\": [{\"role\": \"user\", \"content\": \"What is the capital of France?\"}]}'\n",
Chayenne's avatar
Chayenne committed
79
80
81
82
83
84
85
86
87
88
    "\"\"\"\n",
    "\n",
    "response = json.loads(subprocess.check_output(curl_command, shell=True))\n",
    "print_highlight(response)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
89
    "## Using Python Requests"
Chayenne's avatar
Chayenne committed
90
91
92
93
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
94
   "execution_count": null,
Chayenne's avatar
Chayenne committed
95
96
97
98
99
100
101
102
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:46:42.813656Z",
     "iopub.status.busy": "2024-11-01T02:46:42.813354Z",
     "iopub.status.idle": "2024-11-01T02:46:51.436613Z",
     "shell.execute_reply": "2024-11-01T02:46:51.435965Z"
    }
   },
Chayenne's avatar
Chayenne committed
103
   "outputs": [],
Chayenne's avatar
Chayenne committed
104
   "source": [
Chayenne's avatar
Chayenne committed
105
    "import requests\n",
106
    "\n",
Chayenne's avatar
Chayenne committed
107
108
109
    "url = \"http://localhost:30000/v1/chat/completions\"\n",
    "\n",
    "data = {\n",
110
111
    "    \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    \"messages\": [\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
112
    "        {\"role\": \"user\", \"content\": \"What is the capital of France?\"}\n",
113
    "    ]\n",
Chayenne's avatar
Chayenne committed
114
    "}\n",
115
    "\n",
Chayenne's avatar
Chayenne committed
116
117
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.json())"
Chayenne's avatar
Chayenne committed
118
119
120
121
122
123
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
124
    "## Using OpenAI Python Client"
Chayenne's avatar
Chayenne committed
125
126
127
128
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
129
   "execution_count": null,
Chayenne's avatar
Chayenne committed
130
131
132
133
134
135
136
137
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:46:51.439372Z",
     "iopub.status.busy": "2024-11-01T02:46:51.439178Z",
     "iopub.status.idle": "2024-11-01T02:46:52.895776Z",
     "shell.execute_reply": "2024-11-01T02:46:52.895318Z"
    }
   },
Chayenne's avatar
Chayenne committed
138
   "outputs": [],
Chayenne's avatar
Chayenne committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
   "source": [
    "import openai\n",
    "\n",
    "client = openai.Client(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
    "print_highlight(response)"
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Streaming"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import openai\n",
    "\n",
    "client = openai.Client(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "# Use stream=True for streaming responses\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    "    stream=True,\n",
    ")\n",
    "\n",
    "# Handle the streaming output\n",
    "for chunk in response:\n",
    "    if chunk.choices[0].delta.content:\n",
    "        print(chunk.choices[0].delta.content, end='', flush=True)"
   ]
  },
189
190
191
192
193
194
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using Native Generation APIs\n",
    "\n",
Chayenne's avatar
Chayenne committed
195
    "You can also use the native `/generate` endpoint with requests, which provides more flexiblity. An API reference is available at [Sampling Parameters](https://sgl-project.github.io/references/sampling_params.html)."
196
197
198
199
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
200
   "execution_count": null,
201
   "metadata": {},
Chayenne's avatar
Chayenne committed
202
   "outputs": [],
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
   "source": [
    "import requests\n",
    "\n",
    "response = requests.post(\n",
    "    \"http://localhost:30000/generate\",\n",
    "    json={\n",
    "        \"text\": \"The capital of France is\",\n",
    "        \"sampling_params\": {\n",
    "            \"temperature\": 0,\n",
    "            \"max_new_tokens\": 32,\n",
    "        },\n",
    "    },\n",
    ")\n",
    "\n",
    "print_highlight(response.json())"
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Streaming"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests, json\n",
    "\n",
    "response = requests.post(\n",
    "    \"http://localhost:30000/generate\",\n",
    "    json={\n",
    "        \"text\": \"The capital of France is\",\n",
    "        \"sampling_params\": {\n",
    "            \"temperature\": 0,\n",
    "            \"max_new_tokens\": 32,\n",
    "        },\n",
    "        \"stream\": True,\n",
    "    },\n",
    "    stream=True,\n",
    ")\n",
    "\n",
    "prev = 0\n",
    "for chunk in response.iter_lines(decode_unicode=False):\n",
    "    chunk = chunk.decode(\"utf-8\")\n",
    "    if chunk and chunk.startswith(\"data:\"):\n",
    "        if chunk == \"data: [DONE]\":\n",
    "            break\n",
    "        data = json.loads(chunk[5:].strip(\"\\n\"))\n",
    "        output = data[\"text\"]\n",
    "        print(output[prev:], end=\"\", flush=True)\n",
    "        prev = len(output)"
   ]
  },
Chayenne's avatar
Chayenne committed
260
261
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
262
   "execution_count": 8,
Chayenne's avatar
Chayenne committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:46:52.898411Z",
     "iopub.status.busy": "2024-11-01T02:46:52.898149Z",
     "iopub.status.idle": "2024-11-01T02:46:54.398382Z",
     "shell.execute_reply": "2024-11-01T02:46:54.397564Z"
    }
   },
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
Chayenne's avatar
Chayenne committed
282
283
284
285
286
287
288
289
290
291
292
293
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
Chayenne's avatar
Chayenne committed
294
295
296
297
298
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}