send_request.ipynb 8.09 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
7
    "# Quick Start: Sending Requests\n",
Chayenne's avatar
Chayenne committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
    "This notebook provides a quick-start guide for using SGLang after installation."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch a server\n",
    "This code block is equivalent to executing \n",
    "\n",
    "```bash\n",
    "python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
    "--port 30000 --host 0.0.0.0\n",
    "```\n",
    "\n",
Chayenne's avatar
Chayenne committed
23
    "in your terminal and wait for the server to be ready. Once the server is running, you can send test requests using curl or requests. The server implements the [OpenAI-compatible API](https://platform.openai.com/docs/api-reference/chat)."
Chayenne's avatar
Chayenne committed
24
25
26
27
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
28
   "execution_count": null,
Chayenne's avatar
Chayenne committed
29
30
31
32
33
34
35
36
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:46:13.611212Z",
     "iopub.status.busy": "2024-11-01T02:46:13.611093Z",
     "iopub.status.idle": "2024-11-01T02:46:42.810261Z",
     "shell.execute_reply": "2024-11-01T02:46:42.809147Z"
    }
   },
Chayenne's avatar
Chayenne committed
37
   "outputs": [],
Chayenne's avatar
Chayenne committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
   "source": [
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
    "\n",
    "server_process = execute_shell_command(\n",
    "\"\"\"\n",
    "python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
    "--port 30000 --host 0.0.0.0\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(\"http://localhost:30000\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
60
61
62
63
64
65
66
67
68
69
    "## Using cURL\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import subprocess, json\n",
Chayenne's avatar
Chayenne committed
70
    "\n",
Chayenne's avatar
Chayenne committed
71
72
73
74
75
76
77
78
79
80
81
82
83
    "curl_command = \"\"\"\n",
    "curl -s http://localhost:30000/v1/chat/completions \\\n",
    "  -d '{\"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\", \"messages\": [{\"role\": \"system\", \"content\": \"You are a helpful assistant.\"}, {\"role\": \"user\", \"content\": \"What is a LLM?\"}]}'\n",
    "\"\"\"\n",
    "\n",
    "response = json.loads(subprocess.check_output(curl_command, shell=True))\n",
    "print_highlight(response)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
84
    "## Using Python Requests"
Chayenne's avatar
Chayenne committed
85
86
87
88
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
89
   "execution_count": null,
Chayenne's avatar
Chayenne committed
90
91
92
93
94
95
96
97
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:46:42.813656Z",
     "iopub.status.busy": "2024-11-01T02:46:42.813354Z",
     "iopub.status.idle": "2024-11-01T02:46:51.436613Z",
     "shell.execute_reply": "2024-11-01T02:46:51.435965Z"
    }
   },
Chayenne's avatar
Chayenne committed
98
   "outputs": [],
Chayenne's avatar
Chayenne committed
99
   "source": [
Chayenne's avatar
Chayenne committed
100
    "import requests\n",
101
    "\n",
Chayenne's avatar
Chayenne committed
102
103
104
    "url = \"http://localhost:30000/v1/chat/completions\"\n",
    "\n",
    "data = {\n",
105
106
    "    \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    \"messages\": [\n",
Chayenne's avatar
Chayenne committed
107
108
    "        {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\n",
    "        {\"role\": \"user\", \"content\": \"What is a LLM?\"}\n",
109
    "    ]\n",
Chayenne's avatar
Chayenne committed
110
    "}\n",
111
    "\n",
Chayenne's avatar
Chayenne committed
112
113
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.json())"
Chayenne's avatar
Chayenne committed
114
115
116
117
118
119
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
120
    "## Using OpenAI Python Client"
Chayenne's avatar
Chayenne committed
121
122
123
124
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
125
   "execution_count": null,
Chayenne's avatar
Chayenne committed
126
127
128
129
130
131
132
133
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:46:51.439372Z",
     "iopub.status.busy": "2024-11-01T02:46:51.439178Z",
     "iopub.status.idle": "2024-11-01T02:46:52.895776Z",
     "shell.execute_reply": "2024-11-01T02:46:52.895318Z"
    }
   },
Chayenne's avatar
Chayenne committed
134
   "outputs": [],
Chayenne's avatar
Chayenne committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
   "source": [
    "import openai\n",
    "\n",
    "client = openai.Client(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"system\", \"content\": \"You are a helpful AI assistant\"},\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
    "print_highlight(response)"
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Streaming"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import openai\n",
    "\n",
    "client = openai.Client(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "# Use stream=True for streaming responses\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"system\", \"content\": \"You are a helpful AI assistant\"},\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    "    stream=True,\n",
    ")\n",
    "\n",
    "# Handle the streaming output\n",
    "for chunk in response:\n",
    "    if chunk.choices[0].delta.content:\n",
    "        print(chunk.choices[0].delta.content, end='', flush=True)"
   ]
  },
187
188
189
190
191
192
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using Native Generation APIs\n",
    "\n",
Chayenne's avatar
Chayenne committed
193
    "You can also use the native `/generate` endpoint with requests, which provides more flexiblity. An API reference is available at [Sampling Parameters](https://sgl-project.github.io/references/sampling_params.html)."
194
195
196
197
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
198
   "execution_count": null,
199
   "metadata": {},
Chayenne's avatar
Chayenne committed
200
   "outputs": [],
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
   "source": [
    "import requests\n",
    "\n",
    "response = requests.post(\n",
    "    \"http://localhost:30000/generate\",\n",
    "    json={\n",
    "        \"text\": \"The capital of France is\",\n",
    "        \"sampling_params\": {\n",
    "            \"temperature\": 0,\n",
    "            \"max_new_tokens\": 32,\n",
    "        },\n",
    "    },\n",
    ")\n",
    "\n",
    "print_highlight(response.json())"
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Streaming"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests, json\n",
    "\n",
    "response = requests.post(\n",
    "    \"http://localhost:30000/generate\",\n",
    "    json={\n",
    "        \"text\": \"The capital of France is\",\n",
    "        \"sampling_params\": {\n",
    "            \"temperature\": 0,\n",
    "            \"max_new_tokens\": 32,\n",
    "        },\n",
    "        \"stream\": True,\n",
    "    },\n",
    "    stream=True,\n",
    ")\n",
    "\n",
    "prev = 0\n",
    "for chunk in response.iter_lines(decode_unicode=False):\n",
    "    chunk = chunk.decode(\"utf-8\")\n",
    "    if chunk and chunk.startswith(\"data:\"):\n",
    "        if chunk == \"data: [DONE]\":\n",
    "            break\n",
    "        data = json.loads(chunk[5:].strip(\"\\n\"))\n",
    "        output = data[\"text\"]\n",
    "        print(output[prev:], end=\"\", flush=True)\n",
    "        prev = len(output)"
   ]
  },
Chayenne's avatar
Chayenne committed
258
259
  {
   "cell_type": "code",
260
   "execution_count": 6,
Chayenne's avatar
Chayenne committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:46:52.898411Z",
     "iopub.status.busy": "2024-11-01T02:46:52.898149Z",
     "iopub.status.idle": "2024-11-01T02:46:54.398382Z",
     "shell.execute_reply": "2024-11-01T02:46:54.397564Z"
    }
   },
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
Chayenne's avatar
Chayenne committed
280
281
282
283
284
285
286
287
288
289
290
291
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
Chayenne's avatar
Chayenne committed
292
293
294
295
296
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}