qwen3_moe.py 15.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Adapted from qwen2_moe.py

# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================


"""Inference-only Qwen3MoE model compatible with HuggingFace weights."""

from functools import partial
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
import torch.nn.functional as F
from torch import nn

from sglang.srt.distributed import (
    get_tensor_model_parallel_rank,
    get_tensor_model_parallel_world_size,
    split_tensor_along_last_dim,
    tensor_model_parallel_all_gather,
    tensor_model_parallel_all_reduce,
)
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.linear import (
    MergedColumnParallelLinear,
    QKVParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
from sglang.srt.layers.logits_processor import LogitsProcessor
laixin's avatar
laixin committed
43
from sglang.srt.layers.moe.ep_moe.layer import EPMoE
44
45
46
47
48
49
50
51
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.rotary_embedding import get_rope
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
laixin's avatar
laixin committed
52
from sglang.srt.managers.schedule_batch import global_server_args_dict
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.qwen2_moe import Qwen2MoeMLP as Qwen3MoeMLP
from sglang.srt.models.qwen2_moe import Qwen2MoeModel
from sglang.srt.utils import add_prefix

Qwen3MoeConfig = None


class Qwen3MoeSparseMoeBlock(nn.Module):
    def __init__(
        self,
        config: Qwen3MoeConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()

        if self.tp_size > config.num_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.num_experts}."
            )

laixin's avatar
laixin committed
78
79
80
        MoEImpl = EPMoE if global_server_args_dict["enable_ep_moe"] else FusedMoE

        self.experts = MoEImpl(
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
            num_experts=config.num_experts,
            top_k=config.num_experts_per_tok,
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            prefix=add_prefix("experts", prefix),
        )

        self.gate = ReplicatedLinear(
            config.hidden_size,
            config.num_experts,
            bias=False,
            quant_config=None,
            prefix=add_prefix("gate", prefix),
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        num_tokens, hidden_dim = hidden_states.shape
        hidden_states = hidden_states.view(-1, hidden_dim)

        # router_logits: (num_tokens, n_experts)
        router_logits, _ = self.gate(hidden_states)
        final_hidden_states = self.experts(
            hidden_states=hidden_states, router_logits=router_logits
        )
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)

        return final_hidden_states.view(num_tokens, hidden_dim)


class Qwen3MoeAttention(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        layer_id: int = 0,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        head_dim: Optional[int] = None,
        rms_norm_eps: float = 1e-06,
        attention_bias: bool = False,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        self.tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % self.tp_size == 0
        self.num_heads = self.total_num_heads // self.tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= self.tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % self.tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert self.tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // self.tp_size)
        self.head_dim = head_dim or hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings
        self.tp_rank = get_tensor_model_parallel_rank()

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=attention_bias,
            quant_config=quant_config,
            prefix=add_prefix("qkv_proj", prefix),
        )

        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=attention_bias,
            quant_config=quant_config,
            prefix=add_prefix("o_proj", prefix),
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
        )
        self.attn = RadixAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            layer_id=layer_id,
            prefix=add_prefix("attn", prefix),
        )

        self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
        self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)

    def _apply_qk_norm(
        self, q: torch.Tensor, k: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        q_by_head = q.reshape(-1, self.head_dim)
        q_by_head = self.q_norm(q_by_head)
        q = q_by_head.view(q.shape)
        k_by_head = k.reshape(-1, self.head_dim)
        k_by_head = self.k_norm(k_by_head)
        k = k_by_head.view(k.shape)
        return q, k

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self._apply_qk_norm(q, k)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v, forward_batch)
        output, _ = self.o_proj(attn_output)
        return output


class Qwen3MoeDecoderLayer(nn.Module):
    def __init__(
        self,
        config: Qwen3MoeConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
        head_dim = getattr(
            config, "head_dim", config.hidden_size // config.num_attention_heads
        )
        rms_norm_eps = config.rms_norm_eps
        attention_bias = config.attention_bias
        self.self_attn = Qwen3MoeAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            layer_id=layer_id,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            head_dim=head_dim,
            rms_norm_eps=rms_norm_eps,
            attention_bias=attention_bias,
            quant_config=quant_config,
            prefix=add_prefix("self_attn", prefix),
        )

        # Note: Qwen/Qwen2-57B-A14B-Instruct does not have
        # `mlp_only_layers` in the config.
        mlp_only_layers = (
            [] if not hasattr(config, "mlp_only_layers") else config.mlp_only_layers
        )
        if (layer_id not in mlp_only_layers) and (
            config.num_experts > 0 and (layer_id + 1) % config.decoder_sparse_step == 0
        ):
            self.mlp = Qwen3MoeSparseMoeBlock(
                config=config,
                quant_config=quant_config,
                prefix=add_prefix("mlp", prefix),
            )
        else:
            self.mlp = Qwen3MoeMLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                prefix=add_prefix("mlp", prefix),
            )
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
    ) -> torch.Tensor:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual


class Qwen3MoeModel(Qwen2MoeModel):
    def __init__(
        self,
        config: Qwen3MoeConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__(
            config=config,
            quant_config=quant_config,
            prefix=prefix,
            decoder_layer_type=Qwen3MoeDecoderLayer,
        )


class Qwen3MoeForCausalLM(nn.Module):

    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: Qwen3MoeConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.config = config
        self.quant_config = quant_config
        self.model = Qwen3MoeModel(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=add_prefix("lm_head", prefix),
        )
        self.logits_processor = LogitsProcessor(config)

    @torch.no_grad()
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        forward_batch: ForwardBatch,
        input_embeds: torch.Tensor = None,
    ) -> torch.Tensor:
        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head, forward_batch
        )

    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

laixin's avatar
laixin committed
362
363
364
        MoEImpl = EPMoE if global_server_args_dict["enable_ep_moe"] else FusedMoE

        expert_params_mapping = MoEImpl.make_expert_params_mapping(
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
            num_experts=self.config.num_experts,
        )

        params_dict = dict(self.named_parameters())
        for name, loaded_weight in weights:
            if "rotary_emb.inv_freq" in name:
                continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if "mlp.experts" in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                if name not in params_dict:
                    continue

                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
                        name,
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue
                    if name not in params_dict:
                        continue

                    param = params_dict[name]
                    weight_loader = getattr(
                        param, "weight_loader", default_weight_loader
                    )
                    weight_loader(param, loaded_weight)


EntryClass = Qwen3MoeForCausalLM