"src/libtorchaudio/sox/pybind/pybind.cpp" did not exist on "962c6b0f7f6efbd17349e4cf2fedfe6d2450aad1"
Unverified Commit 4db463b1 authored by yhyang201's avatar yhyang201 Committed by GitHub
Browse files

[Model] Adding Qwen3 and Qwen3MoE (#4693)

parent bfa39224
......@@ -100,8 +100,11 @@ class FlashInferAttnBackend(AttentionBackend):
self.num_wrappers = 1
self.dispatch_reason = None
# Qwen2 models require higher flashinfer workspace size
if "Qwen2ForCausalLM" in model_runner.model_config.hf_config.architectures:
# Qwen2/Qwen3 models require higher flashinfer workspace size
if (
"Qwen2ForCausalLM" in model_runner.model_config.hf_config.architectures
or "Qwen3ForCausalLM" in model_runner.model_config.hf_config.architectures
):
global_config.flashinfer_workspace_size = 512 * 1024 * 1024
# Allocate buffers
......
......@@ -239,6 +239,7 @@ class Qwen2Model(nn.Module):
config: Qwen2Config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
decoder_layer_type: type[nn.Module] = Qwen2DecoderLayer,
) -> None:
super().__init__()
self.config = config
......@@ -250,9 +251,11 @@ class Qwen2Model(nn.Module):
quant_config=quant_config,
prefix=add_prefix("embed_tokens", prefix),
)
# Use the provided decoder layer type or default to Qwen2DecoderLayer
decoder_layer_type = decoder_layer_type or Qwen2DecoderLayer
self.layers = make_layers(
config.num_hidden_layers,
lambda idx, prefix: Qwen2DecoderLayer(
lambda idx, prefix: decoder_layer_type(
layer_id=idx,
config=config,
quant_config=quant_config,
......
......@@ -47,7 +47,7 @@ from sglang.srt.layers.vocab_parallel_embedding import (
from sglang.srt.managers.expert_distribution import ExpertDistributionRecorder
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.utils import add_prefix
from sglang.srt.utils import add_prefix, make_layers
expert_distribution_recorder = ExpertDistributionRecorder()
......@@ -333,6 +333,7 @@ class Qwen2MoeModel(nn.Module):
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
decoder_layer_type: type[nn.Module] = Qwen2MoeDecoderLayer,
) -> None:
super().__init__()
self.padding_idx = config.pad_token_id
......@@ -343,16 +344,17 @@ class Qwen2MoeModel(nn.Module):
config.hidden_size,
prefix=add_prefix("embed_tokens", prefix),
)
self.layers = nn.ModuleList(
[
Qwen2MoeDecoderLayer(
config,
layer_id,
quant_config=quant_config,
prefix=add_prefix(f"layers.{layer_id}", prefix),
)
for layer_id in range(config.num_hidden_layers)
]
# Use the provided decoder layer type or default to Qwen2MoeDecoderLayer
decoder_layer_type = decoder_layer_type or Qwen2MoeDecoderLayer
self.layers = make_layers(
config.num_hidden_layers,
lambda idx, prefix: decoder_layer_type(
layer_id=idx,
config=config,
quant_config=quant_config,
prefix=prefix,
),
prefix=add_prefix("layers", prefix),
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
......
# Adapted from qwen2.py
from functools import partial
from typing import Any, Dict, Iterable, Optional, Tuple
import torch
from torch import nn
from sglang.srt.distributed import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
split_tensor_along_last_dim,
tensor_model_parallel_all_gather,
)
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.linear import QKVParallelLinear, RowParallelLinear
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.pooler import Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.rotary_embedding import get_rope
from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.qwen2 import Qwen2MLP as Qwen3MLP
from sglang.srt.models.qwen2 import Qwen2Model
from sglang.srt.utils import add_prefix
Qwen3Config = None
class Qwen3Attention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
layer_id: int = 0,
rope_theta: float = 1000000,
rope_scaling: Optional[Dict[str, Any]] = None,
head_dim: Optional[int] = None,
max_position_embeddings: int = 32768,
quant_config: Optional[QuantizationConfig] = None,
rms_norm_eps: float = None,
attention_bias: bool = False,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
self.tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % self.tp_size == 0
self.num_heads = self.total_num_heads // self.tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= self.tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % self.tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert self.tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // self.tp_size)
self.head_dim = head_dim or hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.tp_rank = get_tensor_model_parallel_rank()
self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=attention_bias,
quant_config=quant_config,
prefix=add_prefix("qkv_proj", prefix),
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=attention_bias,
quant_config=quant_config,
prefix=add_prefix("o_proj", prefix),
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
)
self.attn = RadixAttention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
layer_id=layer_id,
prefix=add_prefix("attn", prefix),
)
def _apply_qk_norm(
self, q: torch.Tensor, k: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
q_by_head = q.reshape(-1, self.head_dim)
q_by_head = self.q_norm(q_by_head)
q = q_by_head.view(q.shape)
k_by_head = k.reshape(-1, self.head_dim)
k_by_head = self.k_norm(k_by_head)
k = k_by_head.view(k.shape)
return q, k
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self._apply_qk_norm(q, k)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, forward_batch)
output, _ = self.o_proj(attn_output)
return output
class Qwen3DecoderLayer(nn.Module):
def __init__(
self,
config: Qwen3Config,
layer_id: int = 0,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 1000000)
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings", 32768)
head_dim = getattr(config, "head_dim", None)
self.self_attn = Qwen3Attention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
layer_id=layer_id,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
head_dim=head_dim,
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
rms_norm_eps=config.rms_norm_eps,
attention_bias=config.attention_bias,
prefix=add_prefix("self_attn", prefix),
)
self.mlp = Qwen3MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=add_prefix("mlp", prefix),
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
forward_batch=forward_batch,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
class Qwen3Model(Qwen2Model):
def __init__(
self,
config: Qwen3Config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__(
config=config,
quant_config=quant_config,
prefix=prefix,
decoder_layer_type=Qwen3DecoderLayer,
)
class Qwen3ForCausalLM(nn.Module):
# BitandBytes specific attributes
default_bitsandbytes_target_modules = [
".gate_proj.",
".down_proj.",
".up_proj.",
".q_proj.",
".k_proj.",
".v_proj.",
".o_proj.",
]
bitsandbytes_stacked_params_mapping = {
# shard_name, weight_name, index
"q_proj": ("qkv_proj", 0),
"k_proj": ("qkv_proj", 1),
"v_proj": ("qkv_proj", 2),
"gate_proj": ("gate_up_proj", 0),
"up_proj": ("gate_up_proj", 1),
}
def __init__(
self,
config: Qwen3Config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.quant_config = quant_config
self.model = Qwen3Model(
config, quant_config=quant_config, prefix=add_prefix("model", prefix)
)
if config.tie_word_embeddings:
self.lm_head = self.model.embed_tokens
else:
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("lm_head", prefix),
)
self.logits_processor = LogitsProcessor(config)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
get_embedding: bool = False,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
if not get_embedding:
return self.logits_processor(
input_ids, hidden_states, self.lm_head, forward_batch
)
else:
return self.pooler(hidden_states, forward_batch)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name or "projector" in name:
continue
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
if self.config.tie_word_embeddings and "lm_head.weight" in name:
continue
if name.startswith("model.vision_tower") and name not in params_dict:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
def get_embed_and_head(self):
return self.model.embed_tokens.weight, self.lm_head.weight
def set_embed_and_head(self, embed, head):
del self.model.embed_tokens.weight
del self.lm_head.weight
self.model.embed_tokens.weight = embed
self.lm_head.weight = head
torch.cuda.empty_cache()
torch.cuda.synchronize()
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
self.model.load_kv_cache_scales(quantization_param_path)
EntryClass = Qwen3ForCausalLM
# Adapted from qwen2_moe.py
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Inference-only Qwen3MoE model compatible with HuggingFace weights."""
from functools import partial
from typing import Any, Dict, Iterable, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn
from sglang.srt.distributed import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
split_tensor_along_last_dim,
tensor_model_parallel_all_gather,
tensor_model_parallel_all_reduce,
)
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.rotary_embedding import get_rope
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.qwen2_moe import Qwen2MoeMLP as Qwen3MoeMLP
from sglang.srt.models.qwen2_moe import Qwen2MoeModel
from sglang.srt.utils import add_prefix
Qwen3MoeConfig = None
class Qwen3MoeSparseMoeBlock(nn.Module):
def __init__(
self,
config: Qwen3MoeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
if self.tp_size > config.num_experts:
raise ValueError(
f"Tensor parallel size {self.tp_size} is greater than "
f"the number of experts {config.num_experts}."
)
self.experts = FusedMoE(
num_experts=config.num_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.moe_intermediate_size,
reduce_results=False,
renormalize=config.norm_topk_prob,
quant_config=quant_config,
prefix=add_prefix("experts", prefix),
)
self.gate = ReplicatedLinear(
config.hidden_size,
config.num_experts,
bias=False,
quant_config=None,
prefix=add_prefix("gate", prefix),
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
num_tokens, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (num_tokens, n_experts)
router_logits, _ = self.gate(hidden_states)
final_hidden_states = self.experts(
hidden_states=hidden_states, router_logits=router_logits
)
if self.tp_size > 1:
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
return final_hidden_states.view(num_tokens, hidden_dim)
class Qwen3MoeAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
layer_id: int = 0,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
head_dim: Optional[int] = None,
rms_norm_eps: float = 1e-06,
attention_bias: bool = False,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
self.tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % self.tp_size == 0
self.num_heads = self.total_num_heads // self.tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= self.tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % self.tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert self.tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // self.tp_size)
self.head_dim = head_dim or hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.tp_rank = get_tensor_model_parallel_rank()
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=attention_bias,
quant_config=quant_config,
prefix=add_prefix("qkv_proj", prefix),
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=attention_bias,
quant_config=quant_config,
prefix=add_prefix("o_proj", prefix),
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
)
self.attn = RadixAttention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
layer_id=layer_id,
prefix=add_prefix("attn", prefix),
)
self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
def _apply_qk_norm(
self, q: torch.Tensor, k: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
q_by_head = q.reshape(-1, self.head_dim)
q_by_head = self.q_norm(q_by_head)
q = q_by_head.view(q.shape)
k_by_head = k.reshape(-1, self.head_dim)
k_by_head = self.k_norm(k_by_head)
k = k_by_head.view(k.shape)
return q, k
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self._apply_qk_norm(q, k)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, forward_batch)
output, _ = self.o_proj(attn_output)
return output
class Qwen3MoeDecoderLayer(nn.Module):
def __init__(
self,
config: Qwen3MoeConfig,
layer_id: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
head_dim = getattr(
config, "head_dim", config.hidden_size // config.num_attention_heads
)
rms_norm_eps = config.rms_norm_eps
attention_bias = config.attention_bias
self.self_attn = Qwen3MoeAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
layer_id=layer_id,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
head_dim=head_dim,
rms_norm_eps=rms_norm_eps,
attention_bias=attention_bias,
quant_config=quant_config,
prefix=add_prefix("self_attn", prefix),
)
# Note: Qwen/Qwen2-57B-A14B-Instruct does not have
# `mlp_only_layers` in the config.
mlp_only_layers = (
[] if not hasattr(config, "mlp_only_layers") else config.mlp_only_layers
)
if (layer_id not in mlp_only_layers) and (
config.num_experts > 0 and (layer_id + 1) % config.decoder_sparse_step == 0
):
self.mlp = Qwen3MoeSparseMoeBlock(
config=config,
quant_config=quant_config,
prefix=add_prefix("mlp", prefix),
)
else:
self.mlp = Qwen3MoeMLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=add_prefix("mlp", prefix),
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
residual: Optional[torch.Tensor],
) -> torch.Tensor:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
forward_batch=forward_batch,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
class Qwen3MoeModel(Qwen2MoeModel):
def __init__(
self,
config: Qwen3MoeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__(
config=config,
quant_config=quant_config,
prefix=prefix,
decoder_layer_type=Qwen3MoeDecoderLayer,
)
class Qwen3MoeForCausalLM(nn.Module):
fall_back_to_pt_during_load = False
def __init__(
self,
config: Qwen3MoeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.quant_config = quant_config
self.model = Qwen3MoeModel(
config, quant_config, prefix=add_prefix("model", prefix)
)
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("lm_head", prefix),
)
self.logits_processor = LogitsProcessor(config)
@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
return self.logits_processor(
input_ids, hidden_states, self.lm_head, forward_batch
)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
expert_params_mapping = FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.num_experts,
)
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if "mlp.experts" in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(
param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id,
)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
EntryClass = Qwen3MoeForCausalLM
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment