bench_sglang.py 4.65 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
import argparse
import json
import os
import time

import numpy as np
import pandas as pd
import tiktoken

Liangsheng Yin's avatar
Liangsheng Yin committed
10
11
12
13
from sglang.test.test_utils import (
    add_common_sglang_args_and_parse,
    select_sglang_backend,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
16
17
18
19
20
21
22
23
24
25
26

choices = ["A", "B", "C", "D"]

tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")


def format_subject(subject):
    l = subject.split("_")
    s = ""
    for entry in l:
        s += " " + entry
    return s

Liangsheng Yin's avatar
Liangsheng Yin committed
27

Lianmin Zheng's avatar
Lianmin Zheng committed
28
29
30
31
def format_example(df, idx, include_answer=True):
    prompt = df.iloc[idx, 0]
    k = df.shape[1] - 2
    for j in range(k):
Liangsheng Yin's avatar
Liangsheng Yin committed
32
        prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j + 1])
Lianmin Zheng's avatar
Lianmin Zheng committed
33
34
35
36
37
    prompt += "\nAnswer:"
    if include_answer:
        prompt += " {}\n\n".format(df.iloc[idx, k + 1])
    return prompt

Liangsheng Yin's avatar
Liangsheng Yin committed
38

Lianmin Zheng's avatar
Lianmin Zheng committed
39
def gen_prompt(train_df, subject, k=-1):
Liangsheng Yin's avatar
Liangsheng Yin committed
40
41
42
    prompt = "The following are multiple choice questions (with answers) about{}.\n\n".format(
        format_subject(subject)
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
43
44
45
46
47
48
    if k == -1:
        k = train_df.shape[0]
    for i in range(k):
        prompt += format_example(train_df, i)
    return prompt

Liangsheng Yin's avatar
Liangsheng Yin committed
49

50
51
52
53
54
55
56
57
58
59
60
def main(args):
    subjects = sorted(
        [
            f.split("_test.csv")[0]
            for f in os.listdir(os.path.join(args.data_dir, "test"))
            if "_test.csv" in f
        ]
    )

    # Build prompts
    arguments = []
Lianmin Zheng's avatar
Lianmin Zheng committed
61
    labels = []
62
63
64
65
66
67
68
69
70
71
    num_questions = []

    for subject in subjects[: args.nsub]:
        dev_df = pd.read_csv(
            os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None
        )[: args.ntrain]
        test_df = pd.read_csv(
            os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None
        )
        num_questions.append(test_df.shape[0])
Lianmin Zheng's avatar
Lianmin Zheng committed
72

73
        k = args.ntrain
Lianmin Zheng's avatar
Lianmin Zheng committed
74
        few_shot_examples = gen_prompt(dev_df, subject, k)
75
76
77
        while len(tokenizer.encode(few_shot_examples)) > 1536:
            k -= 1
            few_shot_examples = gen_prompt(dev_df, subject, k)
Lianmin Zheng's avatar
Lianmin Zheng committed
78

79
80
        for i in range(test_df.shape[0]):
            prompt_end = format_example(test_df, i, include_answer=False)
Lianmin Zheng's avatar
Lianmin Zheng committed
81

Ying Sheng's avatar
Ying Sheng committed
82
83
84
85
86
87
            arguments.append(
                {
                    "examples": few_shot_examples,
                    "question": prompt_end,
                }
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
88

89
90
            label = test_df.iloc[i, test_df.shape[1] - 1]
            labels.append(label)
Lianmin Zheng's avatar
Lianmin Zheng committed
91
92
93
94
95
96

    #####################################
    ######### SGL Program Begin #########
    #####################################

    import sglang as sgl
97
98

    if args.backend.startswith("gpt-"):
Liangsheng Yin's avatar
Liangsheng Yin committed
99

100
101
102
103
        @sgl.function
        def few_shot_mmlu(s, examples, question):
            s += sgl.user(examples + question)
            s += sgl.assistant(sgl.gen("answer"))
Liangsheng Yin's avatar
Liangsheng Yin committed
104

105
    else:
Liangsheng Yin's avatar
Liangsheng Yin committed
106

107
108
109
        @sgl.function
        def few_shot_mmlu(s, examples, question):
            s += examples + question + sgl.gen("answer")
Lianmin Zheng's avatar
Lianmin Zheng committed
110
111
112
113
114
115
116
117

    #####################################
    ########## SGL Program End ##########
    #####################################

    # Select backend
    backend = select_sglang_backend(args)

118
    # Run
119
    tic = time.perf_counter()
120
    states = few_shot_mmlu.run_batch(
Liangsheng Yin's avatar
Liangsheng Yin committed
121
122
123
124
125
        arguments,
        temperature=0,
        max_new_tokens=1,
        backend=backend,
        num_threads=args.parallel,
126
        progress_bar=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
127
128
129
130
    )
    preds = [
        s["answer"].strip()[0] if len(s["answer"].strip()) > 0 else "" for s in states
    ]
131
    latency = time.perf_counter() - tic
Lianmin Zheng's avatar
Lianmin Zheng committed
132

133
    # Compute accuracy
Lianmin Zheng's avatar
Lianmin Zheng committed
134
135
    cors = [pred == label for pred, label in zip(preds, labels)]

136
137
    pt = 0
    for subject, num_qs in zip(subjects[: args.nsub], num_questions):
Ying Sheng's avatar
Ying Sheng committed
138
139
140
        print(
            f"subject: {subject}, #q:{num_qs}, acc: {np.mean(cors[pt: pt + num_qs]):.3f}"
        )
141
142
143
        pt += num_qs
    assert pt == len(cors)
    weighted_acc = np.mean(cors)
Lianmin Zheng's avatar
Lianmin Zheng committed
144

145
146
    # Print results
    print("Total latency: {:.3f}".format(latency))
Lianmin Zheng's avatar
Lianmin Zheng committed
147
148
149
150
151
152
153
154
    print("Average accuracy: {:.3f}".format(weighted_acc))

    # Write results
    with open(args.result_file, "a") as fout:
        value = {
            "task": "mmlu",
            "backend": args.backend,
            "num_gpus": 1,
155
            "latency": round(latency, 3),
Lianmin Zheng's avatar
Lianmin Zheng committed
156
            "accuracy": round(weighted_acc, 3),
157
            "num_requests": len(arguments),
Lianmin Zheng's avatar
Lianmin Zheng committed
158
159
160
            "other": {
                "nsub": args.nsub,
                "parallel": args.parallel,
Liangsheng Yin's avatar
Liangsheng Yin committed
161
            },
Lianmin Zheng's avatar
Lianmin Zheng committed
162
163
164
165
166
167
168
169
170
171
172
173
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--ntrain", "-k", type=int, default=5)
    parser.add_argument("--data_dir", "-d", type=str, default="data")
    parser.add_argument("--save_dir", "-s", type=str, default="results")
    parser.add_argument("--nsub", type=int, default=60)
    args = add_common_sglang_args_and_parse(parser)
    main(args)