bench_hf.py 3.97 KB
Newer Older
1
2
import argparse

3
import PIL
4
5
import torch
from data_utils import save_json
6
7
8
9
10
11
12
from eval_utils import (
    EvalArgs,
    eval_result,
    get_sampling_params,
    prepare_samples,
    process_result,
)
13
from tqdm import tqdm
Mick's avatar
Mick committed
14
from transformers import AutoModel, AutoProcessor, GenerationConfig
15
16
17
18
19


@torch.no_grad()
def eval_mmmu(args):
    eval_args = EvalArgs.from_cli_args(args)
Mick's avatar
Mick committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    try:
        from transformers import AutoModelForImageTextToText

        model = AutoModelForImageTextToText.from_pretrained(
            args.model_path,
            torch_dtype="auto",
            trust_remote_code=True,
        )
    except Exception as first_exception:
        try:
            model = AutoModel.from_pretrained(
                args.model_path,
                torch_dtype="auto",
                trust_remote_code=True,
                init_tts=False,
            )
        except Exception as second_exception:
            raise RuntimeError(
                f"Failed to load model: First attempt failed with {first_exception}, "
                f"second attempt failed with {second_exception}"
            ) from second_exception
41
42
43
44

    model = model.eval().cuda()

    processor = AutoProcessor.from_pretrained(
Mick's avatar
Mick committed
45
        args.model_path, torch_dtype="auto", device_map="auto", trust_remote_code=True
46
47
48
49
50
51
    )

    samples = prepare_samples(eval_args)
    out_samples = dict()

    sampling_params = get_sampling_params(eval_args)
52
53
54
55
    generation_config = GenerationConfig(
        max_new_tokens=sampling_params["max_new_tokens"],
        do_sample=False,
    )
56
57
58
59
60
61
62

    answer_dict = {}
    for sample in tqdm(samples):
        prompt = sample["final_input_prompt"]
        image = sample["image"]
        prefix = prompt.split("<")[0]
        suffix = prompt.split(">")[1]
63
64
65
66
67
68
69
70
71
72
73
74
75
        assert image is not None
        contents = []
        if prefix:
            contents += [{"type": "text", "text": prefix}]
        contents += [
            {
                "type": "image",
                "image": sample["image_path"],
            }
        ]
        if suffix:
            contents += [{"type": "text", "text": suffix}]
        messages = [{"role": "user", "content": contents}]
Mick's avatar
Mick committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        try:
            model_inputs = processor.tokenizer.apply_chat_template(
                messages,
                tokenize=True,
                return_dict=True,
                add_generation_prompt=True,
                return_tensors="pt",
            ).to(model.device)
            input_len = model_inputs["input_ids"].shape[-1]
            generation = model.generate(
                **model_inputs, generation_config=generation_config
            )
            generation = generation[0][input_len:]
            response = processor.decode(generation, skip_special_tokens=True)
        except:
            contents = []
            if prefix:
                contents += [prefix]
            image = PIL.Image.open(sample["image_path"])
            contents += [image]
            if suffix:
                contents += [suffix]
            messages = [{"role": "user", "content": contents}]
            response = model.chat(
                msgs=messages,
                tokenizer=processor.tokenizer,
                sampling=False,
                max_new_tokens=sampling_params["max_new_tokens"],
                use_tts_template=False,
                generate_audio=False,
                temperature=0.0,
            )
108
        print(f"response: {response}")
109
        process_result(response, sample, answer_dict, out_samples)
110
111
112

    args.output_path = f"{args.model_path}_val_hf.json"
    save_json(args.output_path, out_samples)
113
    eval_result(model_answer_path=args.output_path, answer_dict=answer_dict)
114
115
116
117
118
119
120
121
122
123
124
125
126
127


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model-path",
        type=str,
        help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
        required=True,
    )
    EvalArgs.add_cli_args(parser)
    args = parser.parse_args()

    eval_mmmu(args)