bench_hf.py 3.96 KB
Newer Older
1
2
3
4
import argparse

import torch
from data_utils import save_json
5
6
7
8
9
10
11
from eval_utils import (
    EvalArgs,
    eval_result,
    get_sampling_params,
    prepare_samples,
    process_result,
)
12
from tqdm import tqdm
Mick's avatar
Mick committed
13
from transformers import AutoModel, AutoProcessor, GenerationConfig
14
15
16
17
18


@torch.no_grad()
def eval_mmmu(args):
    eval_args = EvalArgs.from_cli_args(args)
Mick's avatar
Mick committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
    try:
        from transformers import AutoModelForImageTextToText

        model = AutoModelForImageTextToText.from_pretrained(
            args.model_path,
            torch_dtype="auto",
            trust_remote_code=True,
        )
    except Exception as first_exception:
        try:
            model = AutoModel.from_pretrained(
                args.model_path,
                torch_dtype="auto",
                trust_remote_code=True,
                init_tts=False,
            )
        except Exception as second_exception:
            raise RuntimeError(
                f"Failed to load model: First attempt failed with {first_exception}, "
                f"second attempt failed with {second_exception}"
            ) from second_exception
40
41
42
43

    model = model.eval().cuda()

    processor = AutoProcessor.from_pretrained(
Mick's avatar
Mick committed
44
        args.model_path, torch_dtype="auto", device_map="auto", trust_remote_code=True
45
46
47
48
49
50
    )

    samples = prepare_samples(eval_args)
    out_samples = dict()

    sampling_params = get_sampling_params(eval_args)
51
52
53
54
    generation_config = GenerationConfig(
        max_new_tokens=sampling_params["max_new_tokens"],
        do_sample=False,
    )
55
56
57
58
59
60
61

    answer_dict = {}
    for sample in tqdm(samples):
        prompt = sample["final_input_prompt"]
        image = sample["image"]
        prefix = prompt.split("<")[0]
        suffix = prompt.split(">")[1]
62
63
64
65
66
67
68
69
70
71
72
73
74
        assert image is not None
        contents = []
        if prefix:
            contents += [{"type": "text", "text": prefix}]
        contents += [
            {
                "type": "image",
                "image": sample["image_path"],
            }
        ]
        if suffix:
            contents += [{"type": "text", "text": suffix}]
        messages = [{"role": "user", "content": contents}]
Mick's avatar
Mick committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        try:
            model_inputs = processor.tokenizer.apply_chat_template(
                messages,
                tokenize=True,
                return_dict=True,
                add_generation_prompt=True,
                return_tensors="pt",
            ).to(model.device)
            input_len = model_inputs["input_ids"].shape[-1]
            generation = model.generate(
                **model_inputs, generation_config=generation_config
            )
            generation = generation[0][input_len:]
            response = processor.decode(generation, skip_special_tokens=True)
        except:
            contents = []
            if prefix:
                contents += [prefix]
            image = PIL.Image.open(sample["image_path"])
            contents += [image]
            if suffix:
                contents += [suffix]
            messages = [{"role": "user", "content": contents}]
            response = model.chat(
                msgs=messages,
                tokenizer=processor.tokenizer,
                sampling=False,
                max_new_tokens=sampling_params["max_new_tokens"],
                use_tts_template=False,
                generate_audio=False,
                temperature=0.0,
            )
107
        print(f"response: {response}")
108
        process_result(response, sample, answer_dict, out_samples)
109
110
111

    args.output_path = f"{args.model_path}_val_hf.json"
    save_json(args.output_path, out_samples)
112
    eval_result(model_answer_path=args.output_path, answer_dict=answer_dict)
113
114
115
116
117
118
119
120
121
122
123
124
125
126


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model-path",
        type=str,
        help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
        required=True,
    )
    EvalArgs.add_cli_args(parser)
    args = parser.parse_args()

    eval_mmmu(args)