test_kvcacheio.py 24.4 KB
Newer Older
1
2
3
4
import pytest
import torch
from sgl_kernel.kvcacheio import (
    transfer_kv_all_layer,
5
    transfer_kv_all_layer_direct_lf_pf,
6
    transfer_kv_all_layer_lf_ph,
7
    transfer_kv_all_layer_mla,
8
    transfer_kv_direct,
9
    transfer_kv_per_layer,
10
    transfer_kv_per_layer_direct_pf_lf,
11
12
13
    transfer_kv_per_layer_mla,
)

14
15
from sglang.srt.utils import is_hip

16
17
18
19
20

def ref_copy_with_indices(src_pool, dst_pool, src_indices, dst_indices):
    dst_pool[dst_indices] = src_pool[src_indices].to(dst_pool.device)


21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
def ref_copy_with_indices_pf_direct(
    src_pool, dst_pool, src_indices, dst_indices, page_size, layer_id, lf_to_pf=False
):
    if lf_to_pf:
        for i in range(0, len(src_indices), page_size):
            dst_pool[dst_indices[i] // page_size][layer_id] = src_pool[layer_id][
                src_indices[i : i + page_size]
            ].to(dst_pool.device)
    else:
        for i in range(0, len(src_indices), page_size):
            dst_pool[layer_id][dst_indices[i : i + page_size]] = src_pool[
                src_indices[i] // page_size
            ][layer_id].to(dst_pool.device)


36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def ref_copy_with_indices_page_head(
    src_pool,
    dst_pool,
    src_indices,
    dst_indices,
    page_size,
    layer_id,
    head_num,
    lf_to_ph=False,
):
    if lf_to_ph:
        for head_id in range(head_num):
            for i in range(0, len(src_indices)):
                dst_pool[dst_indices[i] // page_size][head_id][
                    dst_indices[i] % page_size
                ][layer_id] = src_pool[layer_id][src_indices[i]][head_id].to(
                    dst_pool.device
                )
    else:
        for head_id in range(head_num):
            for i in range(0, len(src_indices)):
                dst_pool[layer_id][dst_indices[i]][head_id] = src_pool[
                    src_indices[i] // page_size
                ][head_id][src_indices[i] % page_size][layer_id].to(dst_pool.device)


62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("num_items_to_transfer", [1, 128, 1024])
@pytest.mark.parametrize("page_size", [1, 16, 64])
@pytest.mark.parametrize("item_size", [256])
@pytest.mark.parametrize("total_items_in_pool", [10240])
@pytest.mark.parametrize("is_mla", [False, True])
@pytest.mark.parametrize("all_layers", [False, True])
def test_transfer_kv(
    dtype: torch.dtype,
    num_items_to_transfer: int,
    item_size: int,
    page_size: int,
    total_items_in_pool: int,
    is_mla: bool,
    all_layers: bool,
):
    """
    Tests the per-layer transfer functions, treating tensors as memory pools.
    """

    original_dtype = torch.get_default_dtype()
    torch.set_default_dtype(dtype)
    device = "cuda"
    torch.cuda.manual_seed(42)

    num_layers = 4  # A small number of layers for pool creation

    total_pages_in_pool = total_items_in_pool // page_size
    num_pages_to_transfer = num_items_to_transfer // page_size
    if num_pages_to_transfer == 0:
        torch.set_default_dtype(original_dtype)
        return
    page_indices = torch.randperm(total_pages_in_pool, dtype=torch.int64)
    src_indices_host = torch.cat(
        [
            torch.arange(p * page_size, (p + 1) * page_size)
            for p in page_indices[:num_pages_to_transfer]
        ]
    )
    src_indices_device = src_indices_host.to(device)
    dst_indices_host = torch.cat(
        [
            torch.arange(p * page_size, (p + 1) * page_size)
            for p in page_indices[num_pages_to_transfer : 2 * num_pages_to_transfer]
        ]
    )
    dst_indices_device = dst_indices_host.to(device)

    # Prepare memory pools based on whether it's an MLA case.
    if is_mla:
        src_pool_host = torch.randn(
            num_layers, total_items_in_pool, item_size
        ).pin_memory()
        dst_pool_ref = torch.zeros_like(src_pool_host).to(device)
        dst_pool_kernel = torch.zeros_like(dst_pool_ref)
        dst_pool_direct = torch.zeros_like(dst_pool_ref)
    else:
        src_k_pool = torch.randn(
            num_layers, total_items_in_pool, item_size
        ).pin_memory()
        src_v_pool = torch.randn(
            num_layers, total_items_in_pool, item_size
        ).pin_memory()
        dst_k_pool_ref = torch.zeros_like(src_k_pool).to(device)
        dst_v_pool_ref = torch.zeros_like(src_v_pool).to(device)
        dst_k_pool_kernel = torch.zeros_like(dst_k_pool_ref)
        dst_v_pool_kernel = torch.zeros_like(dst_v_pool_ref)
        dst_k_pool_direct = torch.zeros_like(dst_k_pool_ref)
        dst_v_pool_direct = torch.zeros_like(dst_v_pool_ref)

    torch.cuda.synchronize()

    # We will test the per-layer function on the first layer (index 0) of the pool.
    layer_idx_to_test = 0

    if is_mla:
        if not all_layers:
            ref_copy_with_indices(
                src_pool_host[layer_idx_to_test],
                dst_pool_ref[layer_idx_to_test],
                src_indices_host,
                dst_indices_device,
            )
            transfer_kv_per_layer_mla(
                src_pool_host[layer_idx_to_test],
                dst_pool_kernel[layer_idx_to_test],
                src_indices_device,
                dst_indices_device,
Zhiqiang Xie's avatar
Zhiqiang Xie committed
150
                item_size=item_size * dtype.itemsize,
151
            )
152
153
154
            transfer_kv_direct(
                [src_pool_host[layer_idx_to_test]],
                [dst_pool_direct[layer_idx_to_test]],
155
156
157
158
159
160
161
162
163
164
165
166
                src_indices_host,
                dst_indices_device,
                page_size=page_size,
            )
        else:
            for layer_id in range(num_layers):
                ref_copy_with_indices(
                    src_pool_host[layer_id],
                    dst_pool_ref[layer_id],
                    src_indices_host,
                    dst_indices_device,
                )
167
168
169
170
171
172
173
174
175
176
177
178
179
            src_layers_device = torch.tensor(
                [src_pool_host[layer_id].data_ptr() for layer_id in range(num_layers)],
                dtype=torch.uint64,
                device=device,
            )
            dst_layers_device = torch.tensor(
                [
                    dst_pool_kernel[layer_id].data_ptr()
                    for layer_id in range(num_layers)
                ],
                dtype=torch.uint64,
                device=device,
            )
180
            transfer_kv_all_layer_mla(
181
182
                src_layers_device,
                dst_layers_device,
183
184
                src_indices_device,
                dst_indices_device,
185
                item_size=item_size * dtype.itemsize,
186
187
                num_layers=num_layers,
            )
188
189
190
            transfer_kv_direct(
                [src_pool_host[layer_id] for layer_id in range(num_layers)],
                [dst_pool_direct[layer_id] for layer_id in range(num_layers)],
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
                src_indices_host,
                dst_indices_device,
                page_size=page_size,
            )
        torch.cuda.synchronize()
        torch.testing.assert_close(dst_pool_kernel, dst_pool_ref)
        torch.testing.assert_close(dst_pool_direct, dst_pool_ref)
    else:
        if not all_layers:
            ref_copy_with_indices(
                src_k_pool[layer_idx_to_test],
                dst_k_pool_ref[layer_idx_to_test],
                src_indices_host,
                dst_indices_device,
            )
            ref_copy_with_indices(
                src_v_pool[layer_idx_to_test],
                dst_v_pool_ref[layer_idx_to_test],
                src_indices_host,
                dst_indices_device,
            )
            transfer_kv_per_layer(
                src_k_pool[layer_idx_to_test],
                dst_k_pool_kernel[layer_idx_to_test],
                src_v_pool[layer_idx_to_test],
                dst_v_pool_kernel[layer_idx_to_test],
                src_indices_device,
                dst_indices_device,
Zhiqiang Xie's avatar
Zhiqiang Xie committed
219
                item_size=item_size * dtype.itemsize,
220
            )
221
222
223
224
225
226
            transfer_kv_direct(
                [src_k_pool[layer_idx_to_test], src_v_pool[layer_idx_to_test]],
                [
                    dst_k_pool_direct[layer_idx_to_test],
                    dst_v_pool_direct[layer_idx_to_test],
                ],
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
                src_indices_host,
                dst_indices_device,
                page_size=page_size,
            )
        else:
            for layer_id in range(num_layers):
                ref_copy_with_indices(
                    src_k_pool[layer_id],
                    dst_k_pool_ref[layer_id],
                    src_indices_host,
                    dst_indices_device,
                )
                ref_copy_with_indices(
                    src_v_pool[layer_id],
                    dst_v_pool_ref[layer_id],
                    src_indices_host,
                    dst_indices_device,
                )
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

            src_k_layers_device = torch.tensor(
                [src_k_pool[layer_id].data_ptr() for layer_id in range(num_layers)],
                dtype=torch.uint64,
                device=device,
            )
            src_v_layers_device = torch.tensor(
                [src_v_pool[layer_id].data_ptr() for layer_id in range(num_layers)],
                dtype=torch.uint64,
                device=device,
            )
            dst_k_layers_device = torch.tensor(
                [
                    dst_k_pool_kernel[layer_id].data_ptr()
                    for layer_id in range(num_layers)
                ],
                dtype=torch.uint64,
                device=device,
            )
            dst_v_layers_device = torch.tensor(
                [
                    dst_v_pool_kernel[layer_id].data_ptr()
                    for layer_id in range(num_layers)
                ],
                dtype=torch.uint64,
                device=device,
            )
272
            transfer_kv_all_layer(
273
274
275
276
                src_k_layers_device,
                dst_k_layers_device,
                src_v_layers_device,
                dst_v_layers_device,
277
278
                src_indices_device,
                dst_indices_device,
279
                item_size=item_size * dtype.itemsize,
280
281
                num_layers=num_layers,
            )
282
283
284
285
286
            transfer_kv_direct(
                [src_k_pool[layer_id] for layer_id in range(num_layers)]
                + [src_v_pool[layer_id] for layer_id in range(num_layers)],
                [dst_k_pool_direct[layer_id] for layer_id in range(num_layers)]
                + [dst_v_pool_direct[layer_id] for layer_id in range(num_layers)],
287
288
289
290
291
292
293
294
295
296
297
298
299
                src_indices_host,
                dst_indices_device,
                page_size=page_size,
            )
        torch.cuda.synchronize()
        torch.testing.assert_close(dst_k_pool_kernel, dst_k_pool_ref)
        torch.testing.assert_close(dst_v_pool_kernel, dst_v_pool_ref)
        torch.testing.assert_close(dst_k_pool_direct, dst_k_pool_ref)
        torch.testing.assert_close(dst_v_pool_direct, dst_v_pool_ref)

    torch.set_default_dtype(original_dtype)


300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("num_items_to_transfer", [128, 1024, 8192])
@pytest.mark.parametrize("page_size", [16, 64, 128])
@pytest.mark.parametrize("item_size", [256])
@pytest.mark.parametrize("total_items_in_pool", [20480])
@pytest.mark.parametrize("is_mla", [False, True])
@pytest.mark.parametrize("lf_to_pf", [False, True])
def test_transfer_kv_pf_direct(
    dtype: torch.dtype,
    num_items_to_transfer: int,
    item_size: int,
    page_size: int,
    total_items_in_pool: int,
    is_mla: bool,
    lf_to_pf: bool,
):
    original_dtype = torch.get_default_dtype()
    torch.set_default_dtype(dtype)
    device = "cuda"
    torch.cuda.manual_seed(42)

    num_layers = 4

    total_pages_in_pool = total_items_in_pool // page_size
    num_pages_to_transfer = num_items_to_transfer // page_size
    if num_pages_to_transfer == 0:
        torch.set_default_dtype(original_dtype)
        return
    page_indices = torch.randperm(total_pages_in_pool, dtype=torch.int64)
    src_indices_host = torch.cat(
        [
            torch.arange(p * page_size, (p + 1) * page_size)
            for p in page_indices[:num_pages_to_transfer]
        ]
    )
    src_indices_device = src_indices_host.to(device)
    dst_indices_host = torch.cat(
        [
            torch.arange(p * page_size, (p + 1) * page_size)
            for p in page_indices[num_pages_to_transfer : 2 * num_pages_to_transfer]
        ]
    )
    dst_indices_device = dst_indices_host.to(device)

    # We will test the per-layer function on the first layer (index 0) of the pool.
    layer_idx_to_test = 0

    if lf_to_pf:
        if is_mla:
            src_pool = torch.randn(num_layers, total_items_in_pool, item_size).to(
                device
            )
            src_pool_ptrs = [src_pool[i] for i in range(num_layers)]
            dst_pool_ref = torch.zeros(
                total_pages_in_pool, num_layers, page_size, item_size
            ).pin_memory()
            dst_pool_direct = torch.zeros_like(dst_pool_ref)
            torch.cuda.synchronize()

            transfer_kv_all_layer_direct_lf_pf(
                src_pool_ptrs,
                [dst_pool_direct],
                src_indices_host,
                dst_indices_host,
                page_size,
            )
            for i in range(num_layers):
                ref_copy_with_indices_pf_direct(
                    src_pool,
                    dst_pool_ref,
                    src_indices_device,
                    dst_indices_host,
                    page_size,
                    i,
                    lf_to_pf=True,
                )
            torch.cuda.synchronize()
            torch.testing.assert_close(dst_pool_direct, dst_pool_ref)

        else:
            src_k_pool = torch.randn(num_layers, total_items_in_pool, item_size).to(
                device
            )
            src_k_pool_ptrs = [src_k_pool[i] for i in range(num_layers)]
            src_v_pool = torch.randn(num_layers, total_items_in_pool, item_size).to(
                device
            )
            src_v_pool_ptrs = [src_v_pool[i] for i in range(num_layers)]
            dst_k_pool_ref = torch.zeros(
                total_pages_in_pool, num_layers, page_size, item_size
            ).pin_memory()
            dst_v_pool_ref = torch.zeros_like(dst_k_pool_ref)
            dst_k_pool_direct = torch.zeros_like(dst_k_pool_ref)
            dst_v_pool_direct = torch.zeros_like(dst_v_pool_ref)
            torch.cuda.synchronize()

            transfer_kv_all_layer_direct_lf_pf(
                src_k_pool_ptrs + src_v_pool_ptrs,
                [dst_k_pool_direct, dst_v_pool_direct],
                src_indices_host,
                dst_indices_host,
                page_size,
            )
            for i in range(num_layers):
                ref_copy_with_indices_pf_direct(
                    src_k_pool,
                    dst_k_pool_ref,
                    src_indices_device,
                    dst_indices_host,
                    page_size,
                    i,
                    lf_to_pf=True,
                )
                ref_copy_with_indices_pf_direct(
                    src_v_pool,
                    dst_v_pool_ref,
                    src_indices_device,
                    dst_indices_host,
                    page_size,
                    i,
                    lf_to_pf=True,
                )
            torch.cuda.synchronize()
            torch.testing.assert_close(dst_k_pool_direct, dst_k_pool_ref)
            torch.testing.assert_close(dst_v_pool_direct, dst_v_pool_ref)
    else:
        if is_mla:
            src_pool = torch.randn(
                total_pages_in_pool, num_layers, page_size, item_size
            ).pin_memory()

            dst_pool_ref = torch.zeros(num_layers, total_items_in_pool, item_size).to(
                device
            )
            dst_pool_direct = torch.zeros_like(dst_pool_ref)
            dst_pool_direct_ptrs = [dst_pool_direct[i] for i in range(num_layers)]
            torch.cuda.synchronize()

            transfer_kv_per_layer_direct_pf_lf(
                [src_pool],
                [dst_pool_direct_ptrs[layer_idx_to_test]],
                src_indices_host,
                dst_indices_host,
                layer_idx_to_test,
                page_size,
            )
            ref_copy_with_indices_pf_direct(
                src_pool,
                dst_pool_ref,
                src_indices_host,
                dst_indices_device,
                page_size,
                layer_idx_to_test,
                lf_to_pf=False,
            )
            torch.cuda.synchronize()
            torch.testing.assert_close(dst_pool_direct, dst_pool_ref)
        else:
            src_k_pool = torch.randn(
                total_pages_in_pool, num_layers, page_size, item_size
            ).pin_memory()
            src_v_pool = torch.randn(
                total_pages_in_pool, num_layers, page_size, item_size
            ).pin_memory()

            dst_k_pool_ref = torch.zeros(num_layers, total_items_in_pool, item_size).to(
                device
            )
            dst_k_pool_direct = torch.zeros_like(dst_k_pool_ref)
            dst_k_pool_direct_ptrs = [dst_k_pool_direct[i] for i in range(num_layers)]

            dst_v_pool_ref = torch.zeros_like(dst_k_pool_ref)
            dst_v_pool_direct = torch.zeros_like(dst_v_pool_ref)
            dst_v_pool_direct_ptrs = [dst_v_pool_direct[i] for i in range(num_layers)]
            torch.cuda.synchronize()

            transfer_kv_per_layer_direct_pf_lf(
                [src_k_pool, src_v_pool],
                [
                    dst_k_pool_direct_ptrs[layer_idx_to_test],
                    dst_v_pool_direct_ptrs[layer_idx_to_test],
                ],
                src_indices_host,
                dst_indices_host,
                layer_idx_to_test,
                page_size,
            )

            ref_copy_with_indices_pf_direct(
                src_k_pool,
                dst_k_pool_ref,
                src_indices_host,
                dst_indices_device,
                page_size,
                layer_idx_to_test,
                lf_to_pf=False,
            )
            ref_copy_with_indices_pf_direct(
                src_v_pool,
                dst_v_pool_ref,
                src_indices_host,
                dst_indices_device,
                page_size,
                layer_idx_to_test,
                lf_to_pf=False,
            )

            torch.cuda.synchronize()
            torch.testing.assert_close(dst_k_pool_direct, dst_k_pool_ref)
            torch.testing.assert_close(dst_v_pool_direct, dst_v_pool_ref)
    torch.set_default_dtype(original_dtype)


513
@pytest.mark.skipif(is_hip(), reason="HIP is not supported for this test")
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("num_items_to_transfer", [256, 1024])
@pytest.mark.parametrize("page_size", [16, 64, 128])
@pytest.mark.parametrize("item_size", [1024])
@pytest.mark.parametrize("head_num", [8, 16])
@pytest.mark.parametrize("total_items_in_pool", [4096])
@pytest.mark.parametrize("lf_to_ph", [False, True])
def test_transfer_kv_page_head(
    dtype: torch.dtype,
    num_items_to_transfer: int,
    page_size: int,
    item_size: int,
    head_num: int,
    total_items_in_pool: int,
    lf_to_ph: bool,
):
    original_dtype = torch.get_default_dtype()
    torch.set_default_dtype(dtype)
    device = "cuda"
    torch.cuda.manual_seed(42)

    num_layers = 4

    total_pages_in_pool = total_items_in_pool // page_size
    num_pages_to_transfer = num_items_to_transfer // page_size
    if num_pages_to_transfer == 0:
        torch.set_default_dtype(original_dtype)
        return

    assert item_size % head_num == 0
    head_dim = item_size // head_num

    page_indices = torch.randperm(total_pages_in_pool, dtype=torch.int64)
    src_indices_host = torch.cat(
        [
            torch.arange(p * page_size, (p + 1) * page_size)
            for p in page_indices[:num_pages_to_transfer]
        ]
    )
    src_indices_device = src_indices_host.to(device)
    dst_indices_host = torch.cat(
        [
            torch.arange(p * page_size, (p + 1) * page_size)
            for p in page_indices[num_pages_to_transfer : 2 * num_pages_to_transfer]
        ]
    )
    dst_indices_device = dst_indices_host.to(device)

    # We will test the per-layer function on the first layer (index 0) of the pool.
    layer_idx_to_test = 0

    if lf_to_ph:
        src_k_pool = torch.randn(
            num_layers, total_items_in_pool, head_num, head_dim
        ).to(device)
        src_v_pool = torch.randn(
            num_layers, total_items_in_pool, head_num, head_dim
        ).to(device)
        src_k_pool_ptrs = [src_k_pool[i] for i in range(num_layers)]
        src_k_pool_ptrs = torch.tensor(
            [x.data_ptr() for x in src_k_pool_ptrs],
            dtype=torch.uint64,
            device=device,
        )
        src_v_pool_ptrs = [src_v_pool[i] for i in range(num_layers)]
        src_v_pool_ptrs = torch.tensor(
            [x.data_ptr() for x in src_v_pool_ptrs],
            dtype=torch.uint64,
            device=device,
        )

        dst_k_pool_ref = torch.zeros(
            total_pages_in_pool, head_num, page_size, num_layers, head_dim
        ).pin_memory()
        dst_v_pool_ref = torch.zeros_like(dst_k_pool_ref).pin_memory()

        dst_k_pool_kernel = torch.zeros_like(dst_k_pool_ref).pin_memory()
        dst_v_pool_kernel = torch.zeros_like(dst_v_pool_ref).pin_memory()
        torch.cuda.synchronize()

        transfer_kv_all_layer_lf_ph(
            src_k_pool_ptrs,
            dst_k_pool_kernel,
            src_v_pool_ptrs,
            dst_v_pool_kernel,
            src_indices_device,
            dst_indices_device,
            item_size * dtype.itemsize,
            item_size * num_layers * dtype.itemsize,
            num_layers,
            page_size,
            head_num,
        )
        torch.cuda.synchronize()

        for i in range(num_layers):
            ref_copy_with_indices_page_head(
                src_k_pool,
                dst_k_pool_ref,
                src_indices_device,
                dst_indices_host,
                page_size,
                i,
                head_num,
                lf_to_ph=True,
            )
            ref_copy_with_indices_page_head(
                src_v_pool,
                dst_v_pool_ref,
                src_indices_device,
                dst_indices_host,
                page_size,
                i,
                head_num,
                lf_to_ph=True,
            )
        torch.cuda.synchronize()
        torch.testing.assert_close(dst_k_pool_kernel, dst_k_pool_ref)
        torch.testing.assert_close(dst_v_pool_kernel, dst_v_pool_ref)
    else:
634
635
        from sgl_kernel.kvcacheio import transfer_kv_per_layer_ph_lf

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
        src_k_pool = torch.randn(
            total_pages_in_pool, head_num, page_size, num_layers, head_dim
        ).pin_memory()
        src_v_pool = torch.randn(
            total_pages_in_pool, head_num, page_size, num_layers, head_dim
        ).pin_memory()

        dst_k_pool_ref = torch.zeros(
            num_layers, total_items_in_pool, head_num, head_dim
        ).to(device)
        dst_v_pool_ref = torch.zeros_like(dst_k_pool_ref)
        dst_k_pool_kernel = torch.zeros_like(dst_k_pool_ref)
        dst_v_pool_kernel = torch.zeros_like(dst_v_pool_ref)
        dst_k_pool_kernel_ptrs = [dst_k_pool_kernel[i] for i in range(num_layers)]
        dst_v_pool_kernel_ptrs = [dst_v_pool_kernel[i] for i in range(num_layers)]
        torch.cuda.synchronize()

        transfer_kv_per_layer_ph_lf(
            src_k_pool,
            dst_k_pool_kernel_ptrs[layer_idx_to_test],
            src_v_pool,
            dst_v_pool_kernel_ptrs[layer_idx_to_test],
            src_indices_device,
            dst_indices_device,
            layer_idx_to_test,
            item_size * dtype.itemsize,
            item_size * num_layers * dtype.itemsize,
            page_size,
            head_num,
        )

        ref_copy_with_indices_page_head(
            src_k_pool,
            dst_k_pool_ref,
            src_indices_host,
            dst_indices_device,
            page_size,
            layer_idx_to_test,
            head_num,
            lf_to_ph=False,
        )
        ref_copy_with_indices_page_head(
            src_v_pool,
            dst_v_pool_ref,
            src_indices_host,
            dst_indices_device,
            page_size,
            layer_idx_to_test,
            head_num,
            lf_to_ph=False,
        )
        torch.cuda.synchronize()
        torch.testing.assert_close(dst_k_pool_kernel, dst_k_pool_ref)
        torch.testing.assert_close(dst_v_pool_kernel, dst_v_pool_ref)
    torch.set_default_dtype(original_dtype)


693
694
if __name__ == "__main__":
    pytest.main([__file__])