http_server.py 48.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
The entry point of inference server. (SRT = SGLang Runtime)

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
17
This file implements HTTP APIs for the inference engine via fastapi.
18
19
20
21
"""

import asyncio
import dataclasses
22
import json
23
24
25
import logging
import multiprocessing as multiprocessing
import os
26
import tempfile
27
28
29
import threading
import time
from http import HTTPStatus
Lianmin Zheng's avatar
Lianmin Zheng committed
30
from typing import Any, AsyncIterator, Callable, Dict, List, Optional
31
32
33
34

# Fix a bug of Python threading
setattr(threading, "_register_atexit", lambda *args, **kwargs: None)

35
from contextlib import asynccontextmanager
36
from typing import AsyncGenerator
37
38

import numpy as np
39
40
41
42
import orjson
import requests
import uvicorn
import uvloop
43
from fastapi import Depends, FastAPI, HTTPException, Request, UploadFile
44
from fastapi.exceptions import RequestValidationError
45
46
47
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import ORJSONResponse, Response, StreamingResponse

48
from sglang.srt.disaggregation.utils import (
Byron Hsu's avatar
Byron Hsu committed
49
    FAKE_BOOTSTRAP_HOST,
50
    DisaggregationMode,
51
52
    register_disaggregation_server,
)
53
from sglang.srt.entrypoints.engine import _launch_subprocesses
54
55
56
57
from sglang.srt.entrypoints.openai.protocol import (
    ChatCompletionRequest,
    CompletionRequest,
    EmbeddingRequest,
58
    ErrorResponse,
59
60
    ModelCard,
    ModelList,
61
    ResponsesRequest,
62
63
64
65
66
67
68
69
    ScoringRequest,
    V1RerankReqInput,
)
from sglang.srt.entrypoints.openai.serving_chat import OpenAIServingChat
from sglang.srt.entrypoints.openai.serving_completions import OpenAIServingCompletion
from sglang.srt.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
from sglang.srt.entrypoints.openai.serving_rerank import OpenAIServingRerank
from sglang.srt.entrypoints.openai.serving_score import OpenAIServingScore
70
from sglang.srt.function_call.function_call_parser import FunctionCallParser
71
from sglang.srt.managers.io_struct import (
Lianmin Zheng's avatar
Lianmin Zheng committed
72
    AbortReq,
73
74
75
76
77
78
    CloseSessionReqInput,
    ConfigureLoggingReq,
    EmbeddingReqInput,
    GenerateReqInput,
    GetWeightsByNameReqInput,
    InitWeightsUpdateGroupReqInput,
79
    LoadLoRAAdapterReqInput,
80
    OpenSessionReqInput,
81
    ParseFunctionCallReq,
82
    ProfileReqInput,
83
84
    ReleaseMemoryOccupationReqInput,
    ResumeMemoryOccupationReqInput,
Xihuai Wang's avatar
Xihuai Wang committed
85
    SeparateReasoningReqInput,
86
    SetInternalStateReq,
87
    SlowDownReqInput,
88
    UnloadLoRAAdapterReqInput,
89
90
    UpdateWeightFromDiskReqInput,
    UpdateWeightsFromDistributedReqInput,
91
    UpdateWeightsFromTensorReqInput,
92
    UpdateWeightVersionReqInput,
93
    VertexGenerateReqInput,
94
)
95
96
97
98
99
100
101
from sglang.srt.managers.multi_tokenizer_mixin import (
    MultiTokenizerManager,
    deserialize_data,
    get_main_process_id,
    read_from_shared_memory,
    write_data_for_multi_tokenizer,
)
102
from sglang.srt.managers.template_manager import TemplateManager
103
from sglang.srt.managers.tokenizer_manager import ServerStatus, TokenizerManager
104
from sglang.srt.metrics.func_timer import enable_func_timer
105
from sglang.srt.parser.reasoning_parser import ReasoningParser
106
from sglang.srt.server_args import PortArgs, ServerArgs
107
108
109
110
from sglang.srt.utils import (
    add_api_key_middleware,
    add_prometheus_middleware,
    delete_directory,
111
    get_bool_env_var,
112
113
114
    kill_process_tree,
    set_uvicorn_logging_configs,
)
115
from sglang.srt.warmup import execute_warmups
116
117
118
119
120
121
from sglang.utils import get_exception_traceback
from sglang.version import __version__

logger = logging.getLogger(__name__)
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())

122
123
HEALTH_CHECK_TIMEOUT = int(os.getenv("SGLANG_HEALTH_CHECK_TIMEOUT", 20))

124
125
126
127

# Store global states
@dataclasses.dataclass
class _GlobalState:
128
    tokenizer_manager: TokenizerManager
129
    template_manager: TemplateManager
130
131
132
133
134
135
136
137
138
139
140
    scheduler_info: Dict


_global_state: Optional[_GlobalState] = None


def set_global_state(global_state: _GlobalState):
    global _global_state
    _global_state = global_state


141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Function to set up all middlewares for multi-tokenizer compatibility
def setup_middlewares(api_key: Optional[str], enable_metrics: bool):
    """Setup all middlewares for both single and multi-process modes"""
    worker_pid = os.getpid()

    if api_key:
        add_api_key_middleware(app, api_key)
        logger.info(f"Worker {worker_pid} added API key middleware")

    if enable_metrics:
        add_prometheus_middleware(app)
        enable_func_timer()
        logger.info(f"Worker {worker_pid} added prometheus middleware")


async def init_multi_tokenizer() -> ServerArgs:
    """Read args information from shm and init tokenizer manager for current process"""
    pid = os.getpid()
    main_pid = get_main_process_id()
    logger.info(f"current worker_id: {pid}, main processID: {main_pid}")

    # Read configuration from shared memory
    port_args_data = read_from_shared_memory(f"port_args_{main_pid}")
    server_args_data = read_from_shared_memory(f"server_args_{main_pid}")
    scheduler_info_data = read_from_shared_memory(f"scheduler_info_{main_pid}")
    port_args, server_args = deserialize_data(port_args_data, server_args_data)
    scheduler_info = scheduler_info_data

    port_args.tokenizer_ipc_name = (
        f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}"
    )

    # Launch multi-tokenizer manager process
    tokenizer_manager = MultiTokenizerManager(server_args, port_args)
    template_manager = TemplateManager()
    template_manager.initialize_templates(
        tokenizer_manager=tokenizer_manager,
        model_path=server_args.model_path,
        chat_template=server_args.chat_template,
        completion_template=server_args.completion_template,
    )
    # Register this tokenizer with the main tokenizer manager
    await tokenizer_manager.register_to_main_tokenizer_manager()

    tokenizer_manager.max_req_input_len = scheduler_info["max_req_input_len"]
    set_global_state(
        _GlobalState(
            tokenizer_manager=tokenizer_manager,
            template_manager=template_manager,
            scheduler_info=scheduler_info,
        )
    )
    return server_args


196
197
@asynccontextmanager
async def lifespan(fast_api_app: FastAPI):
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    server_args = getattr(fast_api_app, "server_args", None)
    if server_args is None:
        # Initialize multi-tokenizer support for worker processes
        fast_api_app.server_args = await init_multi_tokenizer()
        setup_middlewares(
            fast_api_app.server_args.api_key, fast_api_app.server_args.enable_metrics
        )
        fast_api_app.warmup_thread = threading.Thread(
            target=_wait_and_warmup,
            args=(
                fast_api_app.server_args,
                None,  # pipe_finish_writer not needed in worker
                None,  # launch_callback not needed in worker
            ),
        )

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    # Initialize OpenAI serving handlers
    fast_api_app.state.openai_serving_completion = OpenAIServingCompletion(
        _global_state.tokenizer_manager, _global_state.template_manager
    )
    fast_api_app.state.openai_serving_chat = OpenAIServingChat(
        _global_state.tokenizer_manager, _global_state.template_manager
    )
    fast_api_app.state.openai_serving_embedding = OpenAIServingEmbedding(
        _global_state.tokenizer_manager, _global_state.template_manager
    )
    fast_api_app.state.openai_serving_score = OpenAIServingScore(
        _global_state.tokenizer_manager
    )
    fast_api_app.state.openai_serving_rerank = OpenAIServingRerank(
        _global_state.tokenizer_manager
    )

231
    server_args: ServerArgs = fast_api_app.server_args
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

    tool_server = None
    if server_args.tool_server == "demo":
        from sglang.srt.entrypoints.openai.tool_server import DemoToolServer

        tool_server = DemoToolServer()
    elif server_args.tool_server:
        from sglang.srt.entrypoints.openai.tool_server import MCPToolServer

        tool_server = MCPToolServer()
        await tool_server.add_tool_server(server_args.tool_server)

    try:
        from sglang.srt.entrypoints.openai.serving_responses import (
            OpenAIServingResponses,
        )

        fast_api_app.state.openai_serving_responses = OpenAIServingResponses(
            _global_state.tokenizer_manager,
            _global_state.template_manager,
            enable_prompt_tokens_details=True,
            enable_force_include_usage=True,
            tool_server=tool_server,
        )
    except Exception as e:
        import traceback

        traceback.print_exc()
        logger.warning(f"Can not initialize OpenAIServingResponses, error: {e}")

262
263
    if server_args.warmups is not None:
        await execute_warmups(
264
265
266
            server_args.disaggregation_mode,
            server_args.warmups.split(","),
            _global_state.tokenizer_manager,
267
268
269
270
271
272
        )
        logger.info("Warmup ended")

    warmup_thread = getattr(fast_api_app, "warmup_thread", None)
    if warmup_thread is not None:
        warmup_thread.start()
273
274
275
276
277
278
279
280
281

    try:
        yield
    finally:
        if server_args.tokenizer_worker_num > 1:
            pid = os.getpid()
            logger.info(f"uvicorn worker {pid} ending...")
            warmup_thread.join()
            logger.info(f"uvicorn worker {pid} ended.")
282
283
284


# Fast API
285
286
287
288
app = FastAPI(
    lifespan=lifespan,
    openapi_url=None if get_bool_env_var("DISABLE_OPENAPI_DOC") else "/openapi.json",
)
289
290
291
292
293
294
295
296
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

297

298
299
300
301
302
303
304
305
306
307
308
309
@app.exception_handler(HTTPException)
async def validation_exception_handler(request: Request, exc: HTTPException):
    """Enrich HTTP exception with status code and other details"""
    error = ErrorResponse(
        object="error",
        message=exc.detail,
        type=str(exc.status_code),
        code=exc.status_code,
    )
    return ORJSONResponse(content=error.model_dump(), status_code=exc.status_code)


310
311
312
313
# Custom exception handlers to change validation error status codes
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request: Request, exc: RequestValidationError):
    """Override FastAPI's default 422 validation error with 400"""
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    exc_str = str(exc)
    errors_str = str(exc.errors())

    if errors_str and errors_str != exc_str:
        message = f"{exc_str} {errors_str}"
    else:
        message = exc_str

    err = ErrorResponse(
        message=message,
        type=HTTPStatus.BAD_REQUEST.phrase,
        code=HTTPStatus.BAD_REQUEST.value,
    )

328
329
    return ORJSONResponse(
        status_code=400,
330
        content=err.model_dump(),
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    )


async def validate_json_request(raw_request: Request):
    """Validate that the request content-type is application/json."""
    content_type = raw_request.headers.get("content-type", "").lower()
    media_type = content_type.split(";", maxsplit=1)[0]
    if media_type != "application/json":
        raise RequestValidationError(
            errors=[
                {
                    "loc": ["header", "content-type"],
                    "msg": "Unsupported Media Type: Only 'application/json' is allowed",
                    "type": "value_error",
                }
            ]
        )


350
351
352
353
354
355
##### Native API endpoints #####


@app.get("/health")
@app.get("/health_generate")
async def health_generate(request: Request) -> Response:
356
357
358
359
360
361
362
    """
    Check the health of the inference server by sending a special request to generate one token.

    If the server is running something, this request will be ignored, so it creates zero overhead.
    If the server is not running anything, this request will be run, so we know whether the server is healthy.
    """

363
364
365
    if _global_state.tokenizer_manager.gracefully_exit:
        logger.info("Health check request received during shutdown. Returning 503.")
        return Response(status_code=503)
366

Lianmin Zheng's avatar
Lianmin Zheng committed
367
    if _global_state.tokenizer_manager.server_status == ServerStatus.Starting:
368
369
        return Response(status_code=503)

370
371
    sampling_params = {"max_new_tokens": 1, "temperature": 0.0}
    rid = f"HEALTH_CHECK_{time.time()}"
372

373
    if _global_state.tokenizer_manager.is_image_gen:
374
375
        # Keep this branch for some internal use cases.
        raise NotImplementedError("Image generation is not supported yet.")
376
    elif _global_state.tokenizer_manager.is_generation:
377
        gri = GenerateReqInput(
378
379
380
381
            rid=rid,
            input_ids=[0],
            sampling_params=sampling_params,
            log_metrics=False,
382
        )
383
384
385
386
387
388
        if (
            _global_state.tokenizer_manager.server_args.disaggregation_mode
            != DisaggregationMode.NULL
        ):
            gri.bootstrap_host = FAKE_BOOTSTRAP_HOST
            gri.bootstrap_room = 0
389
390
    else:
        gri = EmbeddingReqInput(
391
            rid=rid, input_ids=[0], sampling_params=sampling_params, log_metrics=False
392
393
        )

394
    async def gen():
395
        async for _ in _global_state.tokenizer_manager.generate_request(gri, request):
396
            break
397
398

    task = asyncio.create_task(gen())
399
400
401
402

    # As long as we receive any response from the detokenizer/scheduler, we consider the server is healthy.
    tic = time.time()
    while time.time() < tic + HEALTH_CHECK_TIMEOUT:
403
404
405
406
        await asyncio.sleep(1)
        if _global_state.tokenizer_manager.last_receive_tstamp > tic:
            task.cancel()
            _global_state.tokenizer_manager.rid_to_state.pop(rid, None)
Lianmin Zheng's avatar
Lianmin Zheng committed
407
            _global_state.tokenizer_manager.server_status = ServerStatus.Up
408
409
410
411
412
413
414
415
416
417
418
419
420
            return Response(status_code=200)

    task.cancel()
    tic_time = time.strftime("%H:%M:%S", time.localtime(tic))
    last_receive_time = time.strftime(
        "%H:%M:%S", time.localtime(_global_state.tokenizer_manager.last_receive_tstamp)
    )
    logger.error(
        f"Health check failed. Server couldn't get a response from detokenizer for last "
        f"{HEALTH_CHECK_TIMEOUT} seconds. tic start time: {tic_time}. "
        f"last_heartbeat time: {last_receive_time}"
    )
    _global_state.tokenizer_manager.rid_to_state.pop(rid, None)
Lianmin Zheng's avatar
Lianmin Zheng committed
421
    _global_state.tokenizer_manager.server_status = ServerStatus.UnHealthy
422
    return Response(status_code=503)
423
424
425
426
427
428


@app.get("/get_model_info")
async def get_model_info():
    """Get the model information."""
    result = {
429
430
431
        "model_path": _global_state.tokenizer_manager.model_path,
        "tokenizer_path": _global_state.tokenizer_manager.server_args.tokenizer_path,
        "is_generation": _global_state.tokenizer_manager.is_generation,
432
        "preferred_sampling_params": _global_state.tokenizer_manager.server_args.preferred_sampling_params,
433
        "weight_version": _global_state.tokenizer_manager.server_args.weight_version,
434
435
436
437
    }
    return result


438
439
440
441
442
443
444
445
@app.get("/get_weight_version")
async def get_weight_version():
    """Get the current weight version."""
    return {
        "weight_version": _global_state.tokenizer_manager.server_args.weight_version
    }


446
447
@app.get("/get_server_info")
async def get_server_info():
448
449
450
451
    # Returns interna states per DP.
    internal_states: List[Dict[Any, Any]] = (
        await _global_state.tokenizer_manager.get_internal_state()
    )
452
    return {
453
        **dataclasses.asdict(_global_state.tokenizer_manager.server_args),
454
        **_global_state.scheduler_info,
455
        "internal_states": internal_states,
456
457
458
459
        "version": __version__,
    }


Liangsheng Yin's avatar
Liangsheng Yin committed
460
461
462
463
464
@app.get("/get_load")
async def get_load():
    return await _global_state.tokenizer_manager.get_load()


465
466
# example usage:
# curl -s -X POST http://localhost:30000/set_internal_state -H "Content-Type: application/json" -d '{"server_args": {"max_micro_batch_size": 8}}'
467
468
469
470
471
472
@app.api_route("/set_internal_state", methods=["POST", "PUT"])
async def set_internal_state(obj: SetInternalStateReq, request: Request):
    res = await _global_state.tokenizer_manager.set_internal_state(obj)
    return res


473
474
475
476
477
478
479
480
# fastapi implicitly converts json in the request to obj (dataclass)
@app.api_route("/generate", methods=["POST", "PUT"])
async def generate_request(obj: GenerateReqInput, request: Request):
    """Handle a generate request."""
    if obj.stream:

        async def stream_results() -> AsyncIterator[bytes]:
            try:
481
                async for out in _global_state.tokenizer_manager.generate_request(
482
483
484
485
486
487
488
                    obj, request
                ):
                    yield b"data: " + orjson.dumps(
                        out, option=orjson.OPT_NON_STR_KEYS
                    ) + b"\n\n"
            except ValueError as e:
                out = {"error": {"message": str(e)}}
489
                logger.error(f"[http_server] Error: {e}")
490
491
492
493
494
495
496
497
                yield b"data: " + orjson.dumps(
                    out, option=orjson.OPT_NON_STR_KEYS
                ) + b"\n\n"
            yield b"data: [DONE]\n\n"

        return StreamingResponse(
            stream_results(),
            media_type="text/event-stream",
498
            background=_global_state.tokenizer_manager.create_abort_task(obj),
499
500
501
        )
    else:
        try:
502
            ret = await _global_state.tokenizer_manager.generate_request(
503
504
505
506
                obj, request
            ).__anext__()
            return ret
        except ValueError as e:
507
            logger.error(f"[http_server] Error: {e}")
508
509
510
            return _create_error_response(e)


511
512
513
514
515
516
517
518
519
@app.api_route("/generate_from_file", methods=["POST"])
async def generate_from_file_request(file: UploadFile, request: Request):
    """Handle a generate request, this is purely to work with input_embeds."""
    content = await file.read()
    input_embeds = json.loads(content.decode("utf-8"))

    obj = GenerateReqInput(
        input_embeds=input_embeds,
        sampling_params={
520
            "temperature": 0.0,
521
522
523
524
525
            "max_new_tokens": 512,
        },
    )

    try:
526
527
528
        ret = await _global_state.tokenizer_manager.generate_request(
            obj, request
        ).__anext__()
529
530
531
532
533
534
        return ret
    except ValueError as e:
        logger.error(f"Error: {e}")
        return _create_error_response(e)


535
536
537
538
@app.api_route("/encode", methods=["POST", "PUT"])
async def encode_request(obj: EmbeddingReqInput, request: Request):
    """Handle an embedding request."""
    try:
539
        ret = await _global_state.tokenizer_manager.generate_request(
540
541
542
543
544
545
546
547
548
549
550
            obj, request
        ).__anext__()
        return ret
    except ValueError as e:
        return _create_error_response(e)


@app.api_route("/classify", methods=["POST", "PUT"])
async def classify_request(obj: EmbeddingReqInput, request: Request):
    """Handle a reward model request. Now the arguments and return values are the same as embedding models."""
    try:
551
        ret = await _global_state.tokenizer_manager.generate_request(
552
553
554
555
556
557
558
            obj, request
        ).__anext__()
        return ret
    except ValueError as e:
        return _create_error_response(e)


559
@app.api_route("/flush_cache", methods=["GET", "POST"])
560
561
async def flush_cache():
    """Flush the radix cache."""
562
    ret = await _global_state.tokenizer_manager.flush_cache()
563
564
565
    return Response(
        content="Cache flushed.\nPlease check backend logs for more details. "
        "(When there are running or waiting requests, the operation will not be performed.)\n",
566
        status_code=200 if ret.success else HTTPStatus.BAD_REQUEST,
567
568
569
    )


570
571
572
573
574
575
576
577
578
579
@app.api_route("/clear_hicache_storage_backend", methods=["GET", "POST"])
async def clear_hicache_storage_backend():
    """Clear the hierarchical cache storage backend."""
    ret = await _global_state.tokenizer_manager.clear_hicache_storage()
    return Response(
        content="Hierarchical cache storage backend cleared.\n",
        status_code=200 if ret.success else HTTPStatus.BAD_REQUEST,
    )


580
@app.api_route("/start_profile", methods=["GET", "POST"])
581
async def start_profile_async(obj: Optional[ProfileReqInput] = None):
582
    """Start profiling."""
583
584
585
586
    if obj is None:
        obj = ProfileReqInput()

    await _global_state.tokenizer_manager.start_profile(
587
        output_dir=obj.output_dir,
588
        start_step=obj.start_step,
589
590
591
592
        num_steps=obj.num_steps,
        activities=obj.activities,
        with_stack=obj.with_stack,
        record_shapes=obj.record_shapes,
593
        profile_by_stage=obj.profile_by_stage,
594
    )
595
596
597
598
599
600
601
602
603
    return Response(
        content="Start profiling.\n",
        status_code=200,
    )


@app.api_route("/stop_profile", methods=["GET", "POST"])
async def stop_profile_async():
    """Stop profiling."""
604
    await _global_state.tokenizer_manager.stop_profile()
605
606
607
608
609
610
    return Response(
        content="Stop profiling. This will take some time.\n",
        status_code=200,
    )


611
612
613
614
615
616
617
618
619
620
621
622
@app.api_route("/freeze_gc", methods=["GET", "POST"])
async def freeze_gc_async():
    """
    See engine.freeze_gc for more details.
    """
    await _global_state.tokenizer_manager.freeze_gc()
    return Response(
        content="Garbage collection frozen.\n",
        status_code=200,
    )


623
624
625
@app.api_route("/start_expert_distribution_record", methods=["GET", "POST"])
async def start_expert_distribution_record_async():
    """Start recording the expert distribution. Clear the previous record if any."""
626
    await _global_state.tokenizer_manager.start_expert_distribution_record()
627
628
629
630
631
632
633
634
635
    return Response(
        content="Start recording the expert distribution.\n",
        status_code=200,
    )


@app.api_route("/stop_expert_distribution_record", methods=["GET", "POST"])
async def stop_expert_distribution_record_async():
    """Stop recording the expert distribution."""
636
    await _global_state.tokenizer_manager.stop_expert_distribution_record()
637
638
639
640
641
642
643
644
645
    return Response(
        content="Stop recording the expert distribution.\n",
        status_code=200,
    )


@app.api_route("/dump_expert_distribution_record", methods=["GET", "POST"])
async def dump_expert_distribution_record_async():
    """Dump expert distribution record."""
646
    await _global_state.tokenizer_manager.dump_expert_distribution_record()
647
648
649
650
651
652
    return Response(
        content="Dump expert distribution record.\n",
        status_code=200,
    )


653
654
@app.post("/update_weights_from_disk")
async def update_weights_from_disk(obj: UpdateWeightFromDiskReqInput, request: Request):
655
656
657
    """Update the weights from disk inplace without re-launching the server."""
    success, message, num_paused_requests = (
        await _global_state.tokenizer_manager.update_weights_from_disk(obj, request)
658
    )
659
660
661
662
663
664

    # Update weight version if provided and weights update was successful
    if success and obj.weight_version is not None:
        _update_weight_version_if_provided(obj.weight_version)
        message += f" Weight version updated to {obj.weight_version}."

665
666
667
668
669
    content = {
        "success": success,
        "message": message,
        "num_paused_requests": num_paused_requests,
    }
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
    if success:
        return ORJSONResponse(
            content,
            status_code=HTTPStatus.OK,
        )
    else:
        return ORJSONResponse(
            content,
            status_code=HTTPStatus.BAD_REQUEST,
        )


@app.post("/init_weights_update_group")
async def init_weights_update_group(
    obj: InitWeightsUpdateGroupReqInput, request: Request
):
    """Initialize the parameter update group."""
687
    success, message = await _global_state.tokenizer_manager.init_weights_update_group(
688
689
690
691
692
693
694
695
696
        obj, request
    )
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


697
698
699
700
701
702
703
704
705
706
707
708
709
710
@app.post("/update_weights_from_tensor")
async def update_weights_from_tensor(
    obj: UpdateWeightsFromTensorReqInput, request: Request
):
    """Update the weights from tensor inplace without re-launching the server.
    Notes:
    1. Ensure that the model is on the correct device (e.g., GPU) before calling this endpoint. If the model is moved to the CPU unexpectedly, it may cause performance issues or runtime errors.
    2. HTTP will transmit only the metadata of the tensor, while the tensor itself will be directly copied to the model.
    3. Any binary data in the named tensors should be base64 encoded.
    """

    success, message = await _global_state.tokenizer_manager.update_weights_from_tensor(
        obj, request
    )
711
712
713
714
715
716

    # Update weight version if provided and weights update was successful
    if success and obj.weight_version is not None:
        _update_weight_version_if_provided(obj.weight_version)
        message += f" Weight version updated to {obj.weight_version}."

717
718
719
720
721
722
    content = {"success": success, "message": message}
    return ORJSONResponse(
        content, status_code=200 if success else HTTPStatus.BAD_REQUEST
    )


723
724
725
726
727
@app.post("/update_weights_from_distributed")
async def update_weights_from_distributed(
    obj: UpdateWeightsFromDistributedReqInput, request: Request
):
    """Update model parameter from distributed online."""
728
729
730
731
    success, message = (
        await _global_state.tokenizer_manager.update_weights_from_distributed(
            obj, request
        )
732
    )
733
734
735
736
737
738

    # Update weight version if provided and weights update was successful
    if success and obj.weight_version is not None:
        _update_weight_version_if_provided(obj.weight_version)
        message += f" Weight version updated to {obj.weight_version}."

739
740
741
742
743
744
745
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
@app.post("/update_weight_version")
async def update_weight_version(obj: UpdateWeightVersionReqInput, request: Request):
    """Update the weight version. This operation requires no active requests."""
    if obj.abort_all_requests:
        _global_state.tokenizer_manager.abort_request(abort_all=True)

    # Use a simple approach without the complex lock mechanism for now
    # since weight_version update is a simple operation that doesn't affect model weights
    try:
        # Update the weight version in server args (the single source of truth)
        _global_state.tokenizer_manager.server_args.weight_version = obj.new_version

        return ORJSONResponse(
            {
                "success": True,
                "message": f"Weight version updated to {obj.new_version}",
                "new_version": obj.new_version,
            },
            status_code=HTTPStatus.OK,
        )
    except Exception as e:
        return ORJSONResponse(
            {
                "success": False,
                "message": f"Failed to update weight version: {str(e)}",
            },
            status_code=HTTPStatus.BAD_REQUEST,
        )


776
777
778
779
@app.api_route("/get_weights_by_name", methods=["GET", "POST"])
async def get_weights_by_name(obj: GetWeightsByNameReqInput, request: Request):
    """Get model parameter by name."""
    try:
780
        ret = await _global_state.tokenizer_manager.get_weights_by_name(obj, request)
781
782
783
784
785
786
787
788
789
790
791
792
        if ret is None:
            return _create_error_response("Get parameter by name failed")
        else:
            return ORJSONResponse(ret, status_code=200)
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/release_memory_occupation", methods=["GET", "POST"])
async def release_memory_occupation(
    obj: ReleaseMemoryOccupationReqInput, request: Request
):
793
    """Release GPU memory occupation temporarily."""
794
    try:
795
        await _global_state.tokenizer_manager.release_memory_occupation(obj, request)
796
797
798
799
800
801
802
803
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/resume_memory_occupation", methods=["GET", "POST"])
async def resume_memory_occupation(
    obj: ResumeMemoryOccupationReqInput, request: Request
):
804
    """Resume GPU memory occupation."""
805
    try:
806
        await _global_state.tokenizer_manager.resume_memory_occupation(obj, request)
807
808
809
810
    except Exception as e:
        return _create_error_response(e)


811
812
813
814
815
816
817
818
819
820
821
822
823
@app.api_route("/slow_down", methods=["GET", "POST"])
async def slow_down(obj: SlowDownReqInput, request: Request):
    """Slow down the system deliberately. Only for testing. Example scenario:
    when we want to test performance of D in large-scale PD disaggregation and have no enough nodes for P,
    we can use this to slow down D to let it have enough running sequences, and then disable slowdown
    to let it run in full batch size.
    """
    try:
        await _global_state.tokenizer_manager.slow_down(obj, request)
    except Exception as e:
        return _create_error_response(e)


824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
@app.api_route("/load_lora_adapter", methods=["POST"])
async def load_lora_adapter(obj: LoadLoRAAdapterReqInput, request: Request):
    """Load a new LoRA adapter without re-launching the server."""
    result = await _global_state.tokenizer_manager.load_lora_adapter(obj, request)

    if result.success:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.OK,
        )
    else:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.BAD_REQUEST,
        )


@app.api_route("/unload_lora_adapter", methods=["POST"])
async def unload_lora_adapter(obj: UnloadLoRAAdapterReqInput, request: Request):
    """Load a new LoRA adapter without re-launching the server."""
    result = await _global_state.tokenizer_manager.unload_lora_adapter(obj, request)

    if result.success:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.OK,
        )
    else:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.BAD_REQUEST,
        )


858
859
860
861
@app.api_route("/open_session", methods=["GET", "POST"])
async def open_session(obj: OpenSessionReqInput, request: Request):
    """Open a session, and return its unique session id."""
    try:
862
        session_id = await _global_state.tokenizer_manager.open_session(obj, request)
863
864
865
866
867
868
869
870
871
872
873
        if session_id is None:
            raise Exception(
                "Failed to open the session. Check if a session with the same id is still open."
            )
        return session_id
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/close_session", methods=["GET", "POST"])
async def close_session(obj: CloseSessionReqInput, request: Request):
874
    """Close the session."""
875
    try:
876
        await _global_state.tokenizer_manager.close_session(obj, request)
877
878
879
880
881
882
883
        return Response(status_code=200)
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/configure_logging", methods=["GET", "POST"])
async def configure_logging(obj: ConfigureLoggingReq, request: Request):
884
    """Configure the request logging options."""
885
    _global_state.tokenizer_manager.configure_logging(obj)
886
887
888
    return Response(status_code=200)


Lianmin Zheng's avatar
Lianmin Zheng committed
889
890
891
892
@app.post("/abort_request")
async def abort_request(obj: AbortReq, request: Request):
    """Abort a request."""
    try:
893
894
895
        _global_state.tokenizer_manager.abort_request(
            rid=obj.rid, abort_all=obj.abort_all
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
896
897
898
899
900
        return Response(status_code=200)
    except Exception as e:
        return _create_error_response(e)


901
902
@app.post("/parse_function_call")
async def parse_function_call_request(obj: ParseFunctionCallReq, request: Request):
YAMY's avatar
YAMY committed
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
    """
    A native API endpoint to parse function calls from a text.
    """
    # 1) Initialize the parser based on the request body
    parser = FunctionCallParser(tools=obj.tools, tool_call_parser=obj.tool_call_parser)

    # 2) Call the non-stream parsing method (non-stream)
    normal_text, calls = parser.parse_non_stream(obj.text)

    # 3) Organize the response content
    response_data = {
        "normal_text": normal_text,
        "calls": [
            call.model_dump() for call in calls
        ],  # Convert pydantic objects to dictionaries
    }

    return ORJSONResponse(content=response_data, status_code=200)


Xihuai Wang's avatar
Xihuai Wang committed
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
@app.post("/separate_reasoning")
async def separate_reasoning_request(obj: SeparateReasoningReqInput, request: Request):
    """
    A native API endpoint to separate reasoning from a text.
    """
    # 1) Initialize the parser based on the request body
    parser = ReasoningParser(model_type=obj.reasoning_parser)

    # 2) Call the non-stream parsing method (non-stream)
    reasoning_text, normal_text = parser.parse_non_stream(obj.text)

    # 3) Organize the response content
    response_data = {
        "reasoning_text": reasoning_text,
        "text": normal_text,
    }

    return ORJSONResponse(content=response_data, status_code=200)


943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
@app.post("/pause_generation")
async def pause_generation(request: Request):
    """Pause generation."""
    await _global_state.tokenizer_manager.pause_generation()
    return ORJSONResponse(
        content={"message": "Generation paused successfully.", "status": "ok"},
        status_code=200,
    )


@app.post("/continue_generation")
async def continue_generation(request: Request):
    """Continue generation."""
    await _global_state.tokenizer_manager.continue_generation()
    return ORJSONResponse(
        content={"message": "Generation continued successfully.", "status": "ok"},
        status_code=200,
    )


963
964
965
##### OpenAI-compatible API endpoints #####


966
967
968
969
970
971
@app.post("/v1/completions", dependencies=[Depends(validate_json_request)])
async def openai_v1_completions(request: CompletionRequest, raw_request: Request):
    """OpenAI-compatible text completion endpoint."""
    return await raw_request.app.state.openai_serving_completion.handle_request(
        request, raw_request
    )
972
973


974
975
976
977
978
979
980
981
@app.post("/v1/chat/completions", dependencies=[Depends(validate_json_request)])
async def openai_v1_chat_completions(
    request: ChatCompletionRequest, raw_request: Request
):
    """OpenAI-compatible chat completion endpoint."""
    return await raw_request.app.state.openai_serving_chat.handle_request(
        request, raw_request
    )
982
983


984
985
986
987
988
989
990
991
992
993
@app.post(
    "/v1/embeddings",
    response_class=ORJSONResponse,
    dependencies=[Depends(validate_json_request)],
)
async def openai_v1_embeddings(request: EmbeddingRequest, raw_request: Request):
    """OpenAI-compatible embeddings endpoint."""
    return await raw_request.app.state.openai_serving_embedding.handle_request(
        request, raw_request
    )
994
995
996


@app.get("/v1/models", response_class=ORJSONResponse)
997
998
async def available_models():
    """Show available models. OpenAI-compatible endpoint."""
999
    served_model_names = [_global_state.tokenizer_manager.served_model_name]
1000
1001
    model_cards = []
    for served_model_name in served_model_names:
1002
1003
1004
1005
1006
1007
1008
        model_cards.append(
            ModelCard(
                id=served_model_name,
                root=served_model_name,
                max_model_len=_global_state.tokenizer_manager.model_config.context_len,
            )
        )
1009
1010
1011
    return ModelList(data=model_cards)


1012
1013
1014
1015
@app.get("/v1/models/{model:path}", response_class=ORJSONResponse)
async def retrieve_model(model: str):
    """Retrieves a model instance, providing basic information about the model."""
    served_model_names = [_global_state.tokenizer_manager.served_model_name]
1016

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
    if model not in served_model_names:
        return ORJSONResponse(
            status_code=404,
            content={
                "error": {
                    "message": f"The model '{model}' does not exist",
                    "type": "invalid_request_error",
                    "param": "model",
                    "code": "model_not_found",
                }
            },
        )
1029

1030
1031
1032
1033
1034
    return ModelCard(
        id=model,
        root=model,
        max_model_len=_global_state.tokenizer_manager.model_config.context_len,
    )
1035
1036


1037
1038
1039
1040
1041
1042
1043
1044
@app.post("/v1/score", dependencies=[Depends(validate_json_request)])
async def v1_score_request(request: ScoringRequest, raw_request: Request):
    """Endpoint for the decoder-only scoring API. See Engine.score() for detailed documentation."""
    return await raw_request.app.state.openai_serving_score.handle_request(
        request, raw_request
    )


1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
@app.post("/v1/responses", dependencies=[Depends(validate_json_request)])
async def v1_responses_request(request: dict, raw_request: Request):
    """Endpoint for the responses API with reasoning support."""

    request_obj = ResponsesRequest(**request)
    result = await raw_request.app.state.openai_serving_responses.create_responses(
        request_obj, raw_request
    )

    # Handle streaming responses
    if isinstance(result, AsyncGenerator):
        return StreamingResponse(
            result,
            media_type="text/event-stream",
            headers={"Cache-Control": "no-cache", "Connection": "keep-alive"},
        )

    return result


@app.get("/v1/responses/{response_id}")
async def v1_retrieve_responses(response_id: str, raw_request: Request):
    """Retrieve a response by ID."""
    return await raw_request.app.state.openai_serving_responses.retrieve_responses(
        response_id
    )


@app.post("/v1/responses/{response_id}/cancel")
async def v1_cancel_responses(response_id: str, raw_request: Request):
    """Cancel a background response."""
    return await raw_request.app.state.openai_serving_responses.cancel_responses(
        response_id
    )


1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
@app.api_route(
    "/v1/rerank", methods=["POST", "PUT"], dependencies=[Depends(validate_json_request)]
)
async def v1_rerank_request(request: V1RerankReqInput, raw_request: Request):
    """Endpoint for reranking documents based on query relevance."""
    return await raw_request.app.state.openai_serving_rerank.handle_request(
        request, raw_request
    )


1091
1092
1093
1094
1095
1096
1097
1098
## SageMaker API
@app.get("/ping")
async def sagemaker_health() -> Response:
    """Check the health of the http server."""
    return Response(status_code=200)


@app.post("/invocations")
1099
1100
1101
1102
1103
1104
1105
async def sagemaker_chat_completions(
    request: ChatCompletionRequest, raw_request: Request
):
    """OpenAI-compatible chat completion endpoint."""
    return await raw_request.app.state.openai_serving_chat.handle_request(
        request, raw_request
    )
1106
1107


1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
## Vertex AI API
@app.post(os.environ.get("AIP_PREDICT_ROUTE", "/vertex_generate"))
async def vertex_generate(vertex_req: VertexGenerateReqInput, raw_request: Request):
    if not vertex_req.instances:
        return []
    inputs = {}
    for input_key in ("text", "input_ids", "input_embeds"):
        if vertex_req.instances[0].get(input_key):
            inputs[input_key] = [
                instance.get(input_key) for instance in vertex_req.instances
            ]
            break
    image_data = [
        instance.get("image_data")
        for instance in vertex_req.instances
        if instance.get("image_data") is not None
    ] or None
    req = GenerateReqInput(
        **inputs,
        image_data=image_data,
        **(vertex_req.parameters or {}),
    )
    ret = await generate_request(req, raw_request)
1131
1132
    if isinstance(ret, Response):
        return ret
1133
1134
1135
    return ORJSONResponse({"predictions": ret})


1136
1137
1138
1139
1140
1141
def _update_weight_version_if_provided(weight_version: Optional[str]) -> None:
    """Update weight version if provided."""
    if weight_version is not None:
        _global_state.tokenizer_manager.server_args.weight_version = weight_version


1142
1143
1144
1145
1146
1147
1148
1149
1150
def _create_error_response(e):
    return ORJSONResponse(
        {"error": {"message": str(e)}}, status_code=HTTPStatus.BAD_REQUEST
    )


def launch_server(
    server_args: ServerArgs,
    pipe_finish_writer: Optional[multiprocessing.connection.Connection] = None,
1151
    launch_callback: Optional[Callable[[], None]] = None,
1152
1153
1154
1155
1156
1157
1158
1159
):
    """
    Launch SRT (SGLang Runtime) Server.

    The SRT server consists of an HTTP server and an SRT engine.

    - HTTP server: A FastAPI server that routes requests to the engine.
    - The engine consists of three components:
1160
        1. TokenizerManager: Tokenizes the requests and sends them to the scheduler.
1161
1162
1163
1164
        2. Scheduler (subprocess): Receives requests from the Tokenizer Manager, schedules batches, forwards them, and sends the output tokens to the Detokenizer Manager.
        3. DetokenizerManager (subprocess): Detokenizes the output tokens and sends the result back to the Tokenizer Manager.

    Note:
1165
    1. The HTTP server, Engine, and TokenizerManager both run in the main process.
1166
    2. Inter-process communication is done through IPC (each process uses a different port) via the ZMQ library.
1167
    """
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
    if server_args.tokenizer_worker_num > 1:
        port_args = PortArgs.init_new(server_args)
        port_args.tokenizer_worker_ipc_name = (
            f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}"
        )
        tokenizer_manager, template_manager, scheduler_info = _launch_subprocesses(
            server_args=server_args, port_args=port_args
        )
    else:
        tokenizer_manager, template_manager, scheduler_info = _launch_subprocesses(
            server_args=server_args,
        )

1181
1182
    set_global_state(
        _GlobalState(
1183
            tokenizer_manager=tokenizer_manager,
1184
            template_manager=template_manager,
1185
1186
1187
1188
            scheduler_info=scheduler_info,
        )
    )

1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
    if server_args.tokenizer_worker_num > 1:
        port_args_shm, server_args_shm, scheduler_info_shm = (
            write_data_for_multi_tokenizer(
                port_args,
                server_args,
                scheduler_info,
            )
        )
    else:
        # Add api key authorization
        if server_args.api_key:
            add_api_key_middleware(app, server_args.api_key)

        # Add prometheus middleware
        if server_args.enable_metrics:
            add_prometheus_middleware(app)
            enable_func_timer()

        # Send a warmup request - we will create the thread launch it
        # in the lifespan after all other warmups have fired.
        warmup_thread = threading.Thread(
            target=_wait_and_warmup,
            args=(
                server_args,
                pipe_finish_writer,
                launch_callback,
            ),
        )
        app.warmup_thread = warmup_thread
1218
1219
1220
1221

    try:
        # Update logging configs
        set_uvicorn_logging_configs()
1222
        app.server_args = server_args
1223
        # Listen for HTTP requests
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
        if server_args.tokenizer_worker_num > 1:
            from uvicorn.config import LOGGING_CONFIG

            LOGGING_CONFIG["loggers"]["sglang.srt.entrypoints.http_server"] = {
                "handlers": ["default"],
                "level": "INFO",
                "propagate": False,
            }
            uvicorn.run(
                "sglang.srt.entrypoints.http_server:app",
                host=server_args.host,
                port=server_args.port,
                log_level=server_args.log_level_http or server_args.log_level,
                timeout_keep_alive=5,
                loop="uvloop",
                workers=server_args.tokenizer_worker_num,
            )
        else:
            uvicorn.run(
                app,
                host=server_args.host,
                port=server_args.port,
                log_level=server_args.log_level_http or server_args.log_level,
                timeout_keep_alive=5,
                loop="uvloop",
            )
1250
    finally:
1251
1252
1253
1254
1255
1256
1257
        if server_args.tokenizer_worker_num > 1:
            port_args_shm.unlink()
            server_args_shm.unlink()
            scheduler_info_shm.unlink()
            _global_state.tokenizer_manager.clear_tokenizer_mapping()
        else:
            warmup_thread.join()
1258
1259


Zilin Zhu's avatar
Zilin Zhu committed
1260
def _execute_server_warmup(
1261
1262
1263
    server_args: ServerArgs,
    pipe_finish_writer: Optional[multiprocessing.connection.Connection],
):
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
    headers = {}
    url = server_args.url()
    if server_args.api_key:
        headers["Authorization"] = f"Bearer {server_args.api_key}"

    # Wait until the server is launched
    success = False
    for _ in range(120):
        time.sleep(1)
        try:
            res = requests.get(url + "/get_model_info", timeout=5, headers=headers)
            assert res.status_code == 200, f"{res=}, {res.text=}"
            success = True
            break
        except (AssertionError, requests.exceptions.RequestException):
            last_traceback = get_exception_traceback()
            pass

    if not success:
        if pipe_finish_writer is not None:
            pipe_finish_writer.send(last_traceback)
        logger.error(f"Initialization failed. warmup error: {last_traceback}")
        kill_process_tree(os.getpid())
Zilin Zhu's avatar
Zilin Zhu committed
1287
        return success
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300

    model_info = res.json()

    # Send a warmup request
    request_name = "/generate" if model_info["is_generation"] else "/encode"
    max_new_tokens = 8 if model_info["is_generation"] else 1
    json_data = {
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": max_new_tokens,
        },
    }
    if server_args.skip_tokenizer_init:
fzyzcjy's avatar
fzyzcjy committed
1301
        json_data["input_ids"] = [[10, 11, 12] for _ in range(server_args.dp_size)]
fzyzcjy's avatar
fzyzcjy committed
1302
1303
1304
        # TODO Workaround the bug that embedding errors for list of size 1
        if server_args.dp_size == 1:
            json_data["input_ids"] = json_data["input_ids"][0]
1305
    else:
fzyzcjy's avatar
fzyzcjy committed
1306
        json_data["text"] = ["The capital city of France is"] * server_args.dp_size
fzyzcjy's avatar
fzyzcjy committed
1307
1308
1309
        # TODO Workaround the bug that embedding errors for list of size 1
        if server_args.dp_size == 1:
            json_data["text"] = json_data["text"][0]
1310

1311
1312
1313
1314
1315
1316
1317
1318
    # Debug dumping
    if server_args.debug_tensor_dump_input_file:
        json_data.pop("text", None)
        json_data["input_ids"] = np.load(
            server_args.debug_tensor_dump_input_file
        ).tolist()
        json_data["sampling_params"]["max_new_tokens"] = 0

1319
    try:
1320
1321
1322
1323
1324
1325
1326
        if server_args.disaggregation_mode == "null":
            res = requests.post(
                url + request_name,
                json=json_data,
                headers=headers,
                timeout=600,
            )
1327
            assert res.status_code == 200, f"{res}"
1328
1329
            _global_state.tokenizer_manager.server_status = ServerStatus.Up

1330
        else:
1331
            logger.info(f"Start of pd disaggregation warmup ...")
1332
1333
1334
1335
1336
1337
            json_data = {
                "sampling_params": {
                    "temperature": 0.0,
                    "max_new_tokens": 8,
                    "ignore_eos": True,
                },
Byron Hsu's avatar
Byron Hsu committed
1338
                "bootstrap_host": [FAKE_BOOTSTRAP_HOST] * server_args.dp_size,
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
                # This is a hack to ensure fake transfer is enabled during prefill warmup
                # ensure each dp rank has a unique bootstrap_room during prefill warmup
                "bootstrap_room": [
                    i * (2**63 // server_args.dp_size) + (i % server_args.tp_size)
                    for i in range(server_args.dp_size)
                ],
                "input_ids": [[0, 1, 2, 3]] * server_args.dp_size,
            }
            res = requests.post(
                url + request_name,
                json=json_data,
                headers=headers,
                timeout=1800,  # because of deep gemm precache is very long if not precache.
            )
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
            if res.status_code == 200:
                logger.info(
                    f"End of prefill disaggregation mode warmup with status {res.status_code}, resp: {res.json()}"
                )
                _global_state.tokenizer_manager.server_status = ServerStatus.Up
            else:
                logger.info(
                    "Prefill disaggregation mode warm Up Failed, status code: {}".format(
                        res.status_code
                    )
                )
                _global_state.tokenizer_manager.server_status = ServerStatus.UnHealthy
1365

1366
1367
1368
1369
1370
1371
    except Exception:
        last_traceback = get_exception_traceback()
        if pipe_finish_writer is not None:
            pipe_finish_writer.send(last_traceback)
        logger.error(f"Initialization failed. warmup error: {last_traceback}")
        kill_process_tree(os.getpid())
Zilin Zhu's avatar
Zilin Zhu committed
1372
        return False
1373
1374

    # Debug print
1375
    # logger.info(f"warmup request returns: {res.json()=}")
Zilin Zhu's avatar
Zilin Zhu committed
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
    return success


def _wait_and_warmup(
    server_args: ServerArgs,
    pipe_finish_writer: Optional[multiprocessing.connection.Connection],
    launch_callback: Optional[Callable[[], None]] = None,
):
    if not server_args.skip_server_warmup:
        if not _execute_server_warmup(
            server_args,
            pipe_finish_writer,
        ):
            return
1390
1391
    else:
        _global_state.tokenizer_manager.server_status = ServerStatus.Up
1392
1393

    logger.info("The server is fired up and ready to roll!")
1394

1395
1396
1397
1398
1399
    if pipe_finish_writer is not None:
        pipe_finish_writer.send("ready")

    if server_args.delete_ckpt_after_loading:
        delete_directory(server_args.model_path)
1400
1401
1402
1403

    if server_args.debug_tensor_dump_input_file:
        kill_process_tree(os.getpid())

1404
1405
1406
1407
1408
1409
1410
1411
    if server_args.pdlb_url is not None:
        register_disaggregation_server(
            server_args.disaggregation_mode,
            server_args.port,
            server_args.disaggregation_bootstrap_port,
            server_args.pdlb_url,
        )

1412
1413
    if launch_callback is not None:
        launch_callback()