test_kvcacheio.py 17.5 KB
Newer Older
1
2
3
4
import pytest
import torch
from sgl_kernel.kvcacheio import (
    transfer_kv_all_layer,
5
    transfer_kv_all_layer_direct_lf_pf,
6
    transfer_kv_all_layer_mla,
7
    transfer_kv_direct,
8
    transfer_kv_per_layer,
9
    transfer_kv_per_layer_direct_pf_lf,
10
11
12
13
14
15
16
17
    transfer_kv_per_layer_mla,
)


def ref_copy_with_indices(src_pool, dst_pool, src_indices, dst_indices):
    dst_pool[dst_indices] = src_pool[src_indices].to(dst_pool.device)


18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
def ref_copy_with_indices_pf_direct(
    src_pool, dst_pool, src_indices, dst_indices, page_size, layer_id, lf_to_pf=False
):
    if lf_to_pf:
        for i in range(0, len(src_indices), page_size):
            dst_pool[dst_indices[i] // page_size][layer_id] = src_pool[layer_id][
                src_indices[i : i + page_size]
            ].to(dst_pool.device)
    else:
        for i in range(0, len(src_indices), page_size):
            dst_pool[layer_id][dst_indices[i : i + page_size]] = src_pool[
                src_indices[i] // page_size
            ][layer_id].to(dst_pool.device)


33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("num_items_to_transfer", [1, 128, 1024])
@pytest.mark.parametrize("page_size", [1, 16, 64])
@pytest.mark.parametrize("item_size", [256])
@pytest.mark.parametrize("total_items_in_pool", [10240])
@pytest.mark.parametrize("is_mla", [False, True])
@pytest.mark.parametrize("all_layers", [False, True])
def test_transfer_kv(
    dtype: torch.dtype,
    num_items_to_transfer: int,
    item_size: int,
    page_size: int,
    total_items_in_pool: int,
    is_mla: bool,
    all_layers: bool,
):
    """
    Tests the per-layer transfer functions, treating tensors as memory pools.
    """

    original_dtype = torch.get_default_dtype()
    torch.set_default_dtype(dtype)
    device = "cuda"
    torch.cuda.manual_seed(42)

    num_layers = 4  # A small number of layers for pool creation

    total_pages_in_pool = total_items_in_pool // page_size
    num_pages_to_transfer = num_items_to_transfer // page_size
    if num_pages_to_transfer == 0:
        torch.set_default_dtype(original_dtype)
        return
    page_indices = torch.randperm(total_pages_in_pool, dtype=torch.int64)
    src_indices_host = torch.cat(
        [
            torch.arange(p * page_size, (p + 1) * page_size)
            for p in page_indices[:num_pages_to_transfer]
        ]
    )
    src_indices_device = src_indices_host.to(device)
    dst_indices_host = torch.cat(
        [
            torch.arange(p * page_size, (p + 1) * page_size)
            for p in page_indices[num_pages_to_transfer : 2 * num_pages_to_transfer]
        ]
    )
    dst_indices_device = dst_indices_host.to(device)

    # Prepare memory pools based on whether it's an MLA case.
    if is_mla:
        src_pool_host = torch.randn(
            num_layers, total_items_in_pool, item_size
        ).pin_memory()
        dst_pool_ref = torch.zeros_like(src_pool_host).to(device)
        dst_pool_kernel = torch.zeros_like(dst_pool_ref)
        dst_pool_direct = torch.zeros_like(dst_pool_ref)
    else:
        src_k_pool = torch.randn(
            num_layers, total_items_in_pool, item_size
        ).pin_memory()
        src_v_pool = torch.randn(
            num_layers, total_items_in_pool, item_size
        ).pin_memory()
        dst_k_pool_ref = torch.zeros_like(src_k_pool).to(device)
        dst_v_pool_ref = torch.zeros_like(src_v_pool).to(device)
        dst_k_pool_kernel = torch.zeros_like(dst_k_pool_ref)
        dst_v_pool_kernel = torch.zeros_like(dst_v_pool_ref)
        dst_k_pool_direct = torch.zeros_like(dst_k_pool_ref)
        dst_v_pool_direct = torch.zeros_like(dst_v_pool_ref)

    torch.cuda.synchronize()

    # We will test the per-layer function on the first layer (index 0) of the pool.
    layer_idx_to_test = 0

    if is_mla:
        if not all_layers:
            ref_copy_with_indices(
                src_pool_host[layer_idx_to_test],
                dst_pool_ref[layer_idx_to_test],
                src_indices_host,
                dst_indices_device,
            )
            transfer_kv_per_layer_mla(
                src_pool_host[layer_idx_to_test],
                dst_pool_kernel[layer_idx_to_test],
                src_indices_device,
                dst_indices_device,
Zhiqiang Xie's avatar
Zhiqiang Xie committed
121
                item_size=item_size * dtype.itemsize,
122
            )
123
124
125
            transfer_kv_direct(
                [src_pool_host[layer_idx_to_test]],
                [dst_pool_direct[layer_idx_to_test]],
126
127
128
129
130
131
132
133
134
135
136
137
                src_indices_host,
                dst_indices_device,
                page_size=page_size,
            )
        else:
            for layer_id in range(num_layers):
                ref_copy_with_indices(
                    src_pool_host[layer_id],
                    dst_pool_ref[layer_id],
                    src_indices_host,
                    dst_indices_device,
                )
138
139
140
141
142
143
144
145
146
147
148
149
150
            src_layers_device = torch.tensor(
                [src_pool_host[layer_id].data_ptr() for layer_id in range(num_layers)],
                dtype=torch.uint64,
                device=device,
            )
            dst_layers_device = torch.tensor(
                [
                    dst_pool_kernel[layer_id].data_ptr()
                    for layer_id in range(num_layers)
                ],
                dtype=torch.uint64,
                device=device,
            )
151
            transfer_kv_all_layer_mla(
152
153
                src_layers_device,
                dst_layers_device,
154
155
                src_indices_device,
                dst_indices_device,
156
                item_size=item_size * dtype.itemsize,
157
158
                num_layers=num_layers,
            )
159
160
161
            transfer_kv_direct(
                [src_pool_host[layer_id] for layer_id in range(num_layers)],
                [dst_pool_direct[layer_id] for layer_id in range(num_layers)],
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
                src_indices_host,
                dst_indices_device,
                page_size=page_size,
            )
        torch.cuda.synchronize()
        torch.testing.assert_close(dst_pool_kernel, dst_pool_ref)
        torch.testing.assert_close(dst_pool_direct, dst_pool_ref)
    else:
        if not all_layers:
            ref_copy_with_indices(
                src_k_pool[layer_idx_to_test],
                dst_k_pool_ref[layer_idx_to_test],
                src_indices_host,
                dst_indices_device,
            )
            ref_copy_with_indices(
                src_v_pool[layer_idx_to_test],
                dst_v_pool_ref[layer_idx_to_test],
                src_indices_host,
                dst_indices_device,
            )
            transfer_kv_per_layer(
                src_k_pool[layer_idx_to_test],
                dst_k_pool_kernel[layer_idx_to_test],
                src_v_pool[layer_idx_to_test],
                dst_v_pool_kernel[layer_idx_to_test],
                src_indices_device,
                dst_indices_device,
Zhiqiang Xie's avatar
Zhiqiang Xie committed
190
                item_size=item_size * dtype.itemsize,
191
            )
192
193
194
195
196
197
            transfer_kv_direct(
                [src_k_pool[layer_idx_to_test], src_v_pool[layer_idx_to_test]],
                [
                    dst_k_pool_direct[layer_idx_to_test],
                    dst_v_pool_direct[layer_idx_to_test],
                ],
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
                src_indices_host,
                dst_indices_device,
                page_size=page_size,
            )
        else:
            for layer_id in range(num_layers):
                ref_copy_with_indices(
                    src_k_pool[layer_id],
                    dst_k_pool_ref[layer_id],
                    src_indices_host,
                    dst_indices_device,
                )
                ref_copy_with_indices(
                    src_v_pool[layer_id],
                    dst_v_pool_ref[layer_id],
                    src_indices_host,
                    dst_indices_device,
                )
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

            src_k_layers_device = torch.tensor(
                [src_k_pool[layer_id].data_ptr() for layer_id in range(num_layers)],
                dtype=torch.uint64,
                device=device,
            )
            src_v_layers_device = torch.tensor(
                [src_v_pool[layer_id].data_ptr() for layer_id in range(num_layers)],
                dtype=torch.uint64,
                device=device,
            )
            dst_k_layers_device = torch.tensor(
                [
                    dst_k_pool_kernel[layer_id].data_ptr()
                    for layer_id in range(num_layers)
                ],
                dtype=torch.uint64,
                device=device,
            )
            dst_v_layers_device = torch.tensor(
                [
                    dst_v_pool_kernel[layer_id].data_ptr()
                    for layer_id in range(num_layers)
                ],
                dtype=torch.uint64,
                device=device,
            )
243
            transfer_kv_all_layer(
244
245
246
247
                src_k_layers_device,
                dst_k_layers_device,
                src_v_layers_device,
                dst_v_layers_device,
248
249
                src_indices_device,
                dst_indices_device,
250
                item_size=item_size * dtype.itemsize,
251
252
                num_layers=num_layers,
            )
253
254
255
256
257
            transfer_kv_direct(
                [src_k_pool[layer_id] for layer_id in range(num_layers)]
                + [src_v_pool[layer_id] for layer_id in range(num_layers)],
                [dst_k_pool_direct[layer_id] for layer_id in range(num_layers)]
                + [dst_v_pool_direct[layer_id] for layer_id in range(num_layers)],
258
259
260
261
262
263
264
265
266
267
268
269
270
                src_indices_host,
                dst_indices_device,
                page_size=page_size,
            )
        torch.cuda.synchronize()
        torch.testing.assert_close(dst_k_pool_kernel, dst_k_pool_ref)
        torch.testing.assert_close(dst_v_pool_kernel, dst_v_pool_ref)
        torch.testing.assert_close(dst_k_pool_direct, dst_k_pool_ref)
        torch.testing.assert_close(dst_v_pool_direct, dst_v_pool_ref)

    torch.set_default_dtype(original_dtype)


271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("num_items_to_transfer", [128, 1024, 8192])
@pytest.mark.parametrize("page_size", [16, 64, 128])
@pytest.mark.parametrize("item_size", [256])
@pytest.mark.parametrize("total_items_in_pool", [20480])
@pytest.mark.parametrize("is_mla", [False, True])
@pytest.mark.parametrize("lf_to_pf", [False, True])
def test_transfer_kv_pf_direct(
    dtype: torch.dtype,
    num_items_to_transfer: int,
    item_size: int,
    page_size: int,
    total_items_in_pool: int,
    is_mla: bool,
    lf_to_pf: bool,
):
    original_dtype = torch.get_default_dtype()
    torch.set_default_dtype(dtype)
    device = "cuda"
    torch.cuda.manual_seed(42)

    num_layers = 4

    total_pages_in_pool = total_items_in_pool // page_size
    num_pages_to_transfer = num_items_to_transfer // page_size
    if num_pages_to_transfer == 0:
        torch.set_default_dtype(original_dtype)
        return
    page_indices = torch.randperm(total_pages_in_pool, dtype=torch.int64)
    src_indices_host = torch.cat(
        [
            torch.arange(p * page_size, (p + 1) * page_size)
            for p in page_indices[:num_pages_to_transfer]
        ]
    )
    src_indices_device = src_indices_host.to(device)
    dst_indices_host = torch.cat(
        [
            torch.arange(p * page_size, (p + 1) * page_size)
            for p in page_indices[num_pages_to_transfer : 2 * num_pages_to_transfer]
        ]
    )
    dst_indices_device = dst_indices_host.to(device)

    # We will test the per-layer function on the first layer (index 0) of the pool.
    layer_idx_to_test = 0

    if lf_to_pf:
        if is_mla:
            src_pool = torch.randn(num_layers, total_items_in_pool, item_size).to(
                device
            )
            src_pool_ptrs = [src_pool[i] for i in range(num_layers)]
            dst_pool_ref = torch.zeros(
                total_pages_in_pool, num_layers, page_size, item_size
            ).pin_memory()
            dst_pool_direct = torch.zeros_like(dst_pool_ref)
            torch.cuda.synchronize()

            transfer_kv_all_layer_direct_lf_pf(
                src_pool_ptrs,
                [dst_pool_direct],
                src_indices_host,
                dst_indices_host,
                page_size,
            )
            for i in range(num_layers):
                ref_copy_with_indices_pf_direct(
                    src_pool,
                    dst_pool_ref,
                    src_indices_device,
                    dst_indices_host,
                    page_size,
                    i,
                    lf_to_pf=True,
                )
            torch.cuda.synchronize()
            torch.testing.assert_close(dst_pool_direct, dst_pool_ref)

        else:
            src_k_pool = torch.randn(num_layers, total_items_in_pool, item_size).to(
                device
            )
            src_k_pool_ptrs = [src_k_pool[i] for i in range(num_layers)]
            src_v_pool = torch.randn(num_layers, total_items_in_pool, item_size).to(
                device
            )
            src_v_pool_ptrs = [src_v_pool[i] for i in range(num_layers)]
            dst_k_pool_ref = torch.zeros(
                total_pages_in_pool, num_layers, page_size, item_size
            ).pin_memory()
            dst_v_pool_ref = torch.zeros_like(dst_k_pool_ref)
            dst_k_pool_direct = torch.zeros_like(dst_k_pool_ref)
            dst_v_pool_direct = torch.zeros_like(dst_v_pool_ref)
            torch.cuda.synchronize()

            transfer_kv_all_layer_direct_lf_pf(
                src_k_pool_ptrs + src_v_pool_ptrs,
                [dst_k_pool_direct, dst_v_pool_direct],
                src_indices_host,
                dst_indices_host,
                page_size,
            )
            for i in range(num_layers):
                ref_copy_with_indices_pf_direct(
                    src_k_pool,
                    dst_k_pool_ref,
                    src_indices_device,
                    dst_indices_host,
                    page_size,
                    i,
                    lf_to_pf=True,
                )
                ref_copy_with_indices_pf_direct(
                    src_v_pool,
                    dst_v_pool_ref,
                    src_indices_device,
                    dst_indices_host,
                    page_size,
                    i,
                    lf_to_pf=True,
                )
            torch.cuda.synchronize()
            torch.testing.assert_close(dst_k_pool_direct, dst_k_pool_ref)
            torch.testing.assert_close(dst_v_pool_direct, dst_v_pool_ref)
    else:
        if is_mla:
            src_pool = torch.randn(
                total_pages_in_pool, num_layers, page_size, item_size
            ).pin_memory()

            dst_pool_ref = torch.zeros(num_layers, total_items_in_pool, item_size).to(
                device
            )
            dst_pool_direct = torch.zeros_like(dst_pool_ref)
            dst_pool_direct_ptrs = [dst_pool_direct[i] for i in range(num_layers)]
            torch.cuda.synchronize()

            transfer_kv_per_layer_direct_pf_lf(
                [src_pool],
                [dst_pool_direct_ptrs[layer_idx_to_test]],
                src_indices_host,
                dst_indices_host,
                layer_idx_to_test,
                page_size,
            )
            ref_copy_with_indices_pf_direct(
                src_pool,
                dst_pool_ref,
                src_indices_host,
                dst_indices_device,
                page_size,
                layer_idx_to_test,
                lf_to_pf=False,
            )
            torch.cuda.synchronize()
            torch.testing.assert_close(dst_pool_direct, dst_pool_ref)
        else:
            src_k_pool = torch.randn(
                total_pages_in_pool, num_layers, page_size, item_size
            ).pin_memory()
            src_v_pool = torch.randn(
                total_pages_in_pool, num_layers, page_size, item_size
            ).pin_memory()

            dst_k_pool_ref = torch.zeros(num_layers, total_items_in_pool, item_size).to(
                device
            )
            dst_k_pool_direct = torch.zeros_like(dst_k_pool_ref)
            dst_k_pool_direct_ptrs = [dst_k_pool_direct[i] for i in range(num_layers)]

            dst_v_pool_ref = torch.zeros_like(dst_k_pool_ref)
            dst_v_pool_direct = torch.zeros_like(dst_v_pool_ref)
            dst_v_pool_direct_ptrs = [dst_v_pool_direct[i] for i in range(num_layers)]
            torch.cuda.synchronize()

            transfer_kv_per_layer_direct_pf_lf(
                [src_k_pool, src_v_pool],
                [
                    dst_k_pool_direct_ptrs[layer_idx_to_test],
                    dst_v_pool_direct_ptrs[layer_idx_to_test],
                ],
                src_indices_host,
                dst_indices_host,
                layer_idx_to_test,
                page_size,
            )

            ref_copy_with_indices_pf_direct(
                src_k_pool,
                dst_k_pool_ref,
                src_indices_host,
                dst_indices_device,
                page_size,
                layer_idx_to_test,
                lf_to_pf=False,
            )
            ref_copy_with_indices_pf_direct(
                src_v_pool,
                dst_v_pool_ref,
                src_indices_host,
                dst_indices_device,
                page_size,
                layer_idx_to_test,
                lf_to_pf=False,
            )

            torch.cuda.synchronize()
            torch.testing.assert_close(dst_k_pool_direct, dst_k_pool_ref)
            torch.testing.assert_close(dst_v_pool_direct, dst_v_pool_ref)
    torch.set_default_dtype(original_dtype)


484
485
if __name__ == "__main__":
    pytest.main([__file__])