test_srt_endpoint.py 12 KB
Newer Older
1
2
"""
python3 -m unittest test_srt_endpoint.TestSRTEndpoint.test_simple_decode
3
python3 -m unittest test_srt_endpoint.TestSRTEndpoint.test_logprob_with_chunked_prefill
4
5
"""

6
import json
7
import random
8
import unittest
9
from concurrent.futures import ThreadPoolExecutor
10
from typing import Optional
11

12
import numpy as np
13
14
import requests

15
from sglang.srt.sampling.custom_logit_processor import CustomLogitProcessor
16
from sglang.srt.utils import kill_process_tree
17
from sglang.test.test_utils import (
Lianmin Zheng's avatar
Lianmin Zheng committed
18
    DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
19
20
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
21
22
    popen_launch_server,
)
23
24
25
26
27


class TestSRTEndpoint(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
Lianmin Zheng's avatar
Lianmin Zheng committed
28
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
29
30
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
31
32
33
34
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=("--enable-custom-logit-processor",),
35
        )
36
37
38

    @classmethod
    def tearDownClass(cls):
39
        kill_process_tree(cls.process.pid)
40
41

    def run_decode(
42
43
44
45
46
47
        self,
        return_logprob=False,
        top_logprobs_num=0,
        return_text=False,
        n=1,
        stream=False,
48
        batch=False,
49
    ):
50
51
52
53
54
        if batch:
            text = ["The capital of France is"]
        else:
            text = "The capital of France is"

55
56
57
        response = requests.post(
            self.base_url + "/generate",
            json={
58
                "text": text,
59
60
                "sampling_params": {
                    "temperature": 0 if n == 1 else 0.5,
61
                    "max_new_tokens": 16,
62
63
                    "n": n,
                },
64
                "stream": stream,
65
66
67
68
69
70
                "return_logprob": return_logprob,
                "top_logprobs_num": top_logprobs_num,
                "return_text_in_logprobs": return_text,
                "logprob_start_len": 0,
            },
        )
71
72
73
74
75
76
77
        if not stream:
            response_json = response.json()
        else:
            response_json = []
            for line in response.iter_lines():
                if line.startswith(b"data: ") and line[6:] != b"[DONE]":
                    response_json.append(json.loads(line[6:]))
78
79

        print(json.dumps(response_json, indent=2))
80
81
82
83
84
        print("=" * 100)

    def test_simple_decode(self):
        self.run_decode()

85
86
87
    def test_simple_decode_batch(self):
        self.run_decode(batch=True)

88
89
90
    def test_parallel_sample(self):
        self.run_decode(n=3)

91
92
93
    def test_parallel_sample_stream(self):
        self.run_decode(n=3, stream=True)

94
    def test_logprob(self):
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        self.run_decode(
            return_logprob=True,
            top_logprobs_num=5,
            return_text=True,
        )

    def test_logprob_start_len(self):
        logprob_start_len = 4
        new_tokens = 4
        prompts = [
            "I have a very good idea on",
            "Today is a sunndy day and",
        ]

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": new_tokens,
                },
                "return_logprob": True,
                "top_logprobs_num": 5,
                "return_text_in_logprobs": True,
                "logprob_start_len": logprob_start_len,
            },
        )
        response_json = response.json()
        print(json.dumps(response_json, indent=2))

        for i, res in enumerate(response_json):
127
128
129
            self.assertEqual(
                res["meta_info"]["prompt_tokens"],
                logprob_start_len + 1 + len(res["meta_info"]["input_token_logprobs"]),
130
131
132
133
134
            )
            assert prompts[i].endswith(
                "".join([x[-1] for x in res["meta_info"]["input_token_logprobs"]])
            )

135
136
137
138
139
            self.assertEqual(res["meta_info"]["completion_tokens"], new_tokens)
            self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), new_tokens)
            self.assertEqual(
                res["text"],
                "".join([x[-1] for x in res["meta_info"]["output_token_logprobs"]]),
140
            )
141

142
    def test_logprob_with_chunked_prefill(self):
143
        """Test a long prompt that requests output logprobs will not hit OOM."""
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        new_tokens = 4
        prompts = "I have a very good idea on this. " * 8000

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": new_tokens,
                },
                "return_logprob": True,
                "logprob_start_len": -1,
            },
        )
        response_json = response.json()
        print(json.dumps(response_json, indent=2))

        res = response_json
        self.assertEqual(res["meta_info"]["completion_tokens"], new_tokens)
        self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), new_tokens)

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    def test_logprob_match(self):
        """Test the output logprobs are close to the input logprobs if we run a prefill again."""

        def run_generate(
            prompt, return_logprob=False, max_new_tokens=512, logprob_start_len=-1
        ):

            if isinstance(prompt, str):
                prompt_kwargs = {"text": prompt}
            else:
                prompt_kwargs = {"input_ids": prompt}

            response = requests.post(
                self.base_url + "/generate",
                json={
                    **prompt_kwargs,
                    "sampling_params": {
                        "temperature": 1.0,
                        "max_new_tokens": max_new_tokens,
                        "ignore_eos": True,
                    },
                    "return_logprob": return_logprob,
                    "return_text_in_logprobs": True,
                    "logprob_start_len": logprob_start_len,
                },
            )
            return response.json()

        prompt = "I have a very good idea on how to"

        gen = run_generate(prompt, return_logprob=True, logprob_start_len=0)
        output_logprobs = np.array(
            [x[0] for x in gen["meta_info"]["output_token_logprobs"]]
        )
        num_prompts_tokens = gen["meta_info"]["prompt_tokens"]

        input_tokens = [x[1] for x in gen["meta_info"]["input_token_logprobs"]]
        output_tokens = [x[1] for x in gen["meta_info"]["output_token_logprobs"]]

        new_prompt = input_tokens + output_tokens
        score = run_generate(
            new_prompt, return_logprob=True, logprob_start_len=0, max_new_tokens=0
        )
        output_logprobs_score = np.array(
            [
                x[0]
                for x in score["meta_info"]["input_token_logprobs"][num_prompts_tokens:]
            ]
        )

        print(f"{output_logprobs[-10:]=}")
        print(f"{output_logprobs_score[-10:]=}")

        diff = np.abs(output_logprobs - output_logprobs_score)
        max_diff = np.max(diff)
221
        self.assertLess(max_diff, 0.25)
222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
    def test_logprob_grammar(self):
        prompts = "Question: Is Paris the Capital of France? Answer:"
        allowed_tokens = [" Yes", " No"]

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 1.0,
                    "max_new_tokens": 1,
                    "regex": "( Yes| No)",
                },
                "return_logprob": True,
237
                "top_logprobs_num": 5,  # The grammar constraint allows all prefix tokens so we need to use a larger top_k.
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
                "return_text_in_logprobs": True,
            },
        )
        response_json = response.json()
        output_top_logprobs = response_json["meta_info"]["output_top_logprobs"][0]
        print(f"{output_top_logprobs=}")

        # Parse results
        # This is becaues the grammar constraint allows all prefix tokens
        logprobs = [None] * 2
        for i in range(len(output_top_logprobs)):
            try:
                idx = allowed_tokens.index(output_top_logprobs[i][2])
            except ValueError:
                # Not found
                continue
            logprobs[idx] = output_top_logprobs[i][0]

        self.assertTrue(all(x is not None for x in logprobs))

258
259
260
261
262
    def run_custom_logit_processor(self, target_token_id: Optional[int] = None):
        """Test custom logit processor with custom params.

        If target_token_id is None, the custom logit processor won't be passed in.
        """
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

        custom_params = {"token_id": target_token_id}

        class DeterministicLogitProcessor(CustomLogitProcessor):
            """A dummy logit processor that changes the logits to always
            sample the given token id.
            """

            def __call__(self, logits, custom_param_list):
                assert logits.shape[0] == len(custom_param_list)
                key = "token_id"

                for i, param_dict in enumerate(custom_param_list):
                    # Mask all other tokens
                    logits[i, :] = -float("inf")
                    # Assign highest probability to the specified token
                    logits[i, param_dict[key]] = 0.0
                return logits

        prompts = "Question: Is Paris the Capital of France? Answer:"

        # Base case json data to be posted to the server.
        base_json = {
            "text": prompts,
            "sampling_params": {"temperature": 0.0},
            "return_logprob": True,
        }

        # Custom json data with custom logit processor and params.
        custom_json = base_json.copy()
293
294
295
296
297
298
        # Only set the custom logit processor if target_token_id is not None.
        if target_token_id is not None:
            custom_json["custom_logit_processor"] = (
                DeterministicLogitProcessor().to_str()
            )
            custom_json["sampling_params"]["custom_params"] = custom_params
299
300
301
302
303
304
305
306
307
308

        custom_response = requests.post(
            self.base_url + "/generate",
            json=custom_json,
        ).json()

        output_token_logprobs = custom_response["meta_info"]["output_token_logprobs"]
        sampled_tokens = [x[1] for x in output_token_logprobs]

        # The logit processor should always sample the given token as the logits is deterministic.
309
310
311
312
313
314
        if target_token_id is not None:
            self.assertTrue(
                all(x == custom_params["token_id"] for x in sampled_tokens),
                # Print the detailed test case info if the test fails.
                f"{target_token_id=}\n{sampled_tokens=}\n{custom_response=}",
            )
315
316
317
318
319
320
321
322
323
324
325

    def test_custom_logit_processor(self):
        """Test custom logit processor with a single request."""
        self.run_custom_logit_processor(target_token_id=5)

    def test_custom_logit_processor_batch(self):
        """Test custom logit processor with a batch of requests."""
        target_token_ids = list(range(32))
        with ThreadPoolExecutor(len(target_token_ids)) as executor:
            list(executor.map(self.run_custom_logit_processor, target_token_ids))

326
327
328
329
330
331
332
    def test_custom_logit_processor_batch_mixed(self):
        """Test a batch of requests mixed of requests with and without custom logit processor."""
        target_token_ids = list(range(32)) + [None] * 16
        random.shuffle(target_token_ids)
        with ThreadPoolExecutor(len(target_token_ids)) as executor:
            list(executor.map(self.run_custom_logit_processor, target_token_ids))

333
334
335
336
337
338
339
340
341
    def test_get_server_info(self):
        response = requests.get(self.base_url + "/get_server_info")
        response_json = response.json()

        max_total_num_tokens = response_json["max_total_num_tokens"]
        self.assertIsInstance(max_total_num_tokens, int)

        attention_backend = response_json["attention_backend"]
        self.assertIsInstance(attention_backend, str)
342

343
344
345
        version = response_json["version"]
        self.assertIsInstance(version, str)

346
347

if __name__ == "__main__":
Lianmin Zheng's avatar
Lianmin Zheng committed
348
    unittest.main()