test_utils.py 10.7 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Common utilities for testing and benchmarking"""
2

Liangsheng Yin's avatar
Liangsheng Yin committed
3
4
5
import asyncio
from functools import partial

Lianmin Zheng's avatar
Lianmin Zheng committed
6
7
import numpy as np
import requests
Liangsheng Yin's avatar
Liangsheng Yin committed
8

Lianmin Zheng's avatar
Lianmin Zheng committed
9
10
11
from sglang.backend.openai import OpenAI
from sglang.backend.runtime_endpoint import RuntimeEndpoint
from sglang.global_config import global_config
12
from sglang.utils import get_exception_traceback
Liangsheng Yin's avatar
Liangsheng Yin committed
13

Lianmin Zheng's avatar
Lianmin Zheng committed
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

    data = {
        "inputs": prompt,
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop_sequences": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    pred = res.json()["generated_text"][0]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
32
33
34
def call_generate_vllm(prompt, temperature, max_tokens, stop=None, n=1, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


51
def call_generate_outlines(
Liangsheng Yin's avatar
Liangsheng Yin committed
52
    prompt, temperature, max_tokens, stop=[], regex=None, n=1, url=None
53
):
Liangsheng Yin's avatar
Liangsheng Yin committed
54
55
    assert url is not None

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "regex": regex,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
73
74
75
def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    data = {
        "text": prompt,
        "sampling_params": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    obj = res.json()
    pred = obj["text"]
    return pred


91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
def call_generate_xinfer(prompt, temperature, max_tokens, stop=None, url=None):
    import grpc
    from xlm.proto import sampler_pb2, sampler_pb2_grpc

    sampler_channel = grpc.insecure_channel(url.replace("http://", ""))
    sampler = sampler_pb2_grpc.SamplerStub(sampler_channel)

    sample_request = sampler_pb2.SampleTextRequest(
        prompt=prompt,
        settings=sampler_pb2.SampleSettings(
            max_len=max_tokens,
            rng_seed=0,
            temperature=max(temperature, 1e-7),
            nucleus_p=1,
            stop_strings=[stop],
        ),
    )
    stream = sampler.SampleText(sample_request)
    response = "".join([x.text for x in stream])
    return response


Liangsheng Yin's avatar
Liangsheng Yin committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
def call_generate_guidance(
    prompt, temperature, max_tokens, stop=None, n=1, regex=None, model=None
):
    assert model is not None
    from guidance import gen

    rets = []
    for _ in range(n):
        out = (
            model
            + prompt
            + gen(
                name="answer",
                max_tokens=max_tokens,
                temperature=temperature,
                stop=stop,
                regex=regex,
            )
        )
        rets.append(out["answer"])
    return rets if n > 1 else rets[0]


async def call_generate_lmql(
    prompt, temperature, max_tokens, stop=None, n=1, max_len=4096, model=None, **kwargs
):
    assert model is not None
    import lmql

    if stop != None:

        @lmql.query(model=model)
        async def program(question, max_tokens, stop):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens and STOPS_AT(ANSWER, stop)
            return ANSWER
            '''

    else:

        @lmql.query(model=model)
        async def program(question, max_tokens):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens
            return ANSWER
            '''

    tasks = [
        program(
            question=prompt,
            temperature=temperature,
            max_tokens=max_tokens,
            stop=stop,
            max_len=max_len,
            **kwargs,
        )
        for _ in range(n)
    ]
    rets = await asyncio.gather(*tasks)
    return rets if n > 1 else rets[0]


def call_select_lightllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    scores = []
    for i in range(len(choices)):
        data = {
            "inputs": context + choices[i],
            "parameters": {
                "max_new_tokens": 1,
            },
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
        scores.append(0)
    return np.argmax(scores)


Liangsheng Yin's avatar
Liangsheng Yin committed
192
193
194
def call_select_vllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
195
196
197
198
199
200
201
202
203
    scores = []
    for i in range(len(choices)):
        data = {
            "prompt": context + choices[i],
            "max_tokens": 1,
            "prompt_logprobs": 1,
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
Lianmin Zheng's avatar
Lianmin Zheng committed
204
        scores.append(res.json().get("prompt_score", 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
205
206
207
208
209
210
211
212
213
214
215
    return np.argmax(scores)

    """
    Modify vllm/entrypoints/api_server.py

    if final_output.prompt_logprobs is not None:
        score = np.mean([prob[t_id] for t_id, prob in zip(final_output.prompt_token_ids[1:], final_output.prompt_logprobs[1:])])
        ret["prompt_score"] = score
    """


Liangsheng Yin's avatar
Liangsheng Yin committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
def call_select_guidance(context, choices, model=None):
    assert model is not None
    from guidance import select

    out = model + context + select(choices, name="answer")
    return choices.index(out["answer"])


async def call_select_lmql(context, choices, temperature=0, max_len=4096, model=None):
    assert model is not None
    import lmql

    @lmql.query(model=model)
    async def program(ctx, choices):
        '''lmql
        """{ctx}[ANSWER]""" where ANSWER in set(choices)
        return ANSWER
        '''

    answer = await program(
        ctx=context, choices=choices, temperature=temperature, max_len=max_len
    )
    return choices.index(answer)


Lianmin Zheng's avatar
Lianmin Zheng committed
241
def add_common_other_args_and_parse(parser):
Lianmin Zheng's avatar
Lianmin Zheng committed
242
    parser.add_argument("--parallel", type=int, default=64)
Lianmin Zheng's avatar
Lianmin Zheng committed
243
244
245
246
247
248
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=None)
    parser.add_argument(
        "--backend",
        type=str,
        required=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
249
250
251
252
        choices=[
            "vllm",
            "outlines",
            "lightllm",
253
            "xinfer",
Liangsheng Yin's avatar
Liangsheng Yin committed
254
255
256
257
258
            "guidance",
            "lmql",
            "srt-raw",
            "llama.cpp",
        ],
Lianmin Zheng's avatar
Lianmin Zheng committed
259
    )
Liangsheng Yin's avatar
Liangsheng Yin committed
260
    parser.add_argument("--n-ctx", type=int, default=4096)
Lianmin Zheng's avatar
Lianmin Zheng committed
261
262
263
264
265
266
267
268
269
    parser.add_argument(
        "--model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
    )
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()

    if args.port is None:
        default_port = {
            "vllm": 21000,
Liangsheng Yin's avatar
Liangsheng Yin committed
270
            "outlines": 21000,
Lianmin Zheng's avatar
Lianmin Zheng committed
271
272
273
            "lightllm": 22000,
            "lmql": 23000,
            "srt-raw": 30000,
274
            "xinfer": 9988,
Lianmin Zheng's avatar
Lianmin Zheng committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        }
        args.port = default_port.get(args.backend, None)
    return args


def add_common_sglang_args_and_parse(parser):
    parser.add_argument("--parallel", type=int, default=64)
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    parser.add_argument("--backend", type=str, default="srt")
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()
    return args


def select_sglang_backend(args):
    if args.backend.startswith("srt"):
        if args.backend == "srt-no-parallel":
            global_config.enable_parallel_decoding = False
            global_config.enable_parallel_encoding = False
        backend = RuntimeEndpoint(f"{args.host}:{args.port}")
296
    elif args.backend.startswith("gpt-"):
Lianmin Zheng's avatar
Lianmin Zheng committed
297
298
299
300
        backend = OpenAI(args.backend)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")
    return backend
Liangsheng Yin's avatar
Liangsheng Yin committed
301
302
303
304
305
306
307
308
309


def _get_call_generate(args):
    if args.backend == "lightllm":
        return partial(call_generate_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_generate_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "srt-raw":
        return partial(call_generate_srt_raw, url=f"{args.host}:{args.port}/generate")
310
311
    elif args.backend == "xinfer":
        return partial(call_generate_xinfer, url=f"{args.host}:{args.port}")
Liangsheng Yin's avatar
Liangsheng Yin committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    elif args.backend == "outlines":
        return partial(call_generate_outlines, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_generate = partial(call_generate_guidance, model=model)
        call_generate("Hello,", 1.0, 8, ".")
        return call_generate
    elif args.backend == "lmql":
        import lmql

        model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
        return partial(call_generate_lmql, model=model)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


def _get_call_select(args):
    if args.backend == "lightllm":
        return partial(call_select_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_select_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_select = partial(call_select_guidance, model=model)

        call_select("Hello,", ["world", "earth"])
        return call_select

    elif args.backend == "lmql":
        import lmql

        model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
        return partial(call_select_lmql, model=model)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


def get_call_generate(args):
    call_generate = _get_call_generate(args)

    def func(*args, **kwargs):
        try:
            return call_generate(*args, **kwargs)
        except Exception:
            print("Exception in call_generate:\n" + get_exception_traceback())
            raise

    return func


def get_call_select(args):
    call_select = _get_call_select(args)

    def func(*args, **kwargs):
        try:
            return call_select(*args, **kwargs)
        except Exception:
            print("Exception in call_select:\n" + get_exception_traceback())
            raise

    return func