benchmark_and_profiling.md 7.99 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
# Benchmark and Profiling

## Benchmark
4

5
6
- Benchmark the latency of running a single static batch without a server. The arguments are the same as for `launch_server.py`.
  Note that this is a simplified test script without a dynamic batching server, so it may run out of memory for a batch size that a real server can handle. A real server truncates the prefill into several batches, while this simplified script does not.
7
8
9
10
11
12
13
14
  - Without a server (do not need to launch a server)
    ```bash
    python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --batch 32 --input-len 256 --output-len 32
    ```
  - With a server (please use `sglang.launch_server` to launch a server first and run the following command.)
    ```bash
    python -m sglang.bench_one_batch_server --base-url http://127.0.0.1:30000 --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --batch-size 32 --input-len 256 --output-len 32
    ```
15
16


17
- Benchmark offline processing. This script will start an offline engine and run the benchmark.
18
19

  ```bash
20
21
  python3 -m sglang.bench_offline_throughput --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --num-prompts 10
  ```
22

23
- Benchmark online serving. Please use `sglang.launch_server` to launch a server first and run the following command.
24
25

  ```bash
Lianmin Zheng's avatar
Lianmin Zheng committed
26
27
28
  python3 -m sglang.bench_serving --backend sglang --num-prompt 10
  ```

29
## Profile with PyTorch Profiler
30
31
32

[Pytorch Profiler](https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html) is a convenient basic tool to inspect kernel execution time, call stack, and kernel overlap and occupancy.

33
34
- To profile a server

35
36
37
38
39
40
41
42
  ```bash
  # set trace path
  export SGLANG_TORCH_PROFILER_DIR=/root/sglang/profile_log

  # start server
  python -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct

  # send profiling request from client
43
  python -m sglang.bench_serving --backend sglang --model meta-llama/Llama-3.1-8B-Instruct --num-prompts 10 --sharegpt-output-len 100 --profile
44
  ```
45

46
  Please make sure that the `SGLANG_TORCH_PROFILER_DIR` should be set at both server and client side, otherwise the trace file cannot be generated correctly . A secure way will be setting `SGLANG_TORCH_PROFILER_DIR` in the `.*rc` file of shell (e.g. `~/.bashrc` for bash shells).
47
48

- To profile offline
49
50
  ```bash
  export SGLANG_TORCH_PROFILER_DIR=/root/sglang/profile_log
51
52
53
54
55
56

  # profile one batch with bench_one_batch.py
  # batch size can be controlled with --batch argument
  python3 -m sglang.bench_one_batch --model-path meta-llama/Llama-3.1-8B-Instruct --batch 32 --input-len 1024 --output-len 10 --profile

  # profile multiple batches with bench_offline_throughput.py
57
58
  python -m sglang.bench_offline_throughput --model-path meta-llama/Llama-3.1-8B-Instruct --dataset-name random --num-prompts 10 --profile --mem-frac=0.8
  ```
59

60
61
62
63
64
65
66
67
68
69
70
- Possible PyTorch Bug
  If in any cases you encounter the following error (for example, using qwen 2.5 VL):
  ```bash
  RuntimeError: !stack.empty() INTERNAL ASSERT FAILED at "/pytorch/torch/csrc/autograd/profiler_python.cpp":983, please report a bug to PyTorch. Python replay stack is empty.
  ```
  This is likely a PyTorch Bug reported in [Bug: vLLM Profiler](https://github.com/vllm-project/vllm/issues/18240) and [Bug: torch.profiler.profile](https://github.com/pytorch/pytorch/issues/101632). As a workaround, you may disable `with_stack` with an environment variable such as follows:
  ```bash
  export SGLANG_PROFILE_WITH_STACK=False
  python -m sglang.bench_offline_throughput --model-path meta-llama/Llama-3.1-8B-Instruct --dataset-name random --num-prompts 10 --profile --mem-frac=0.8
  ```

71
72
- View Traces

73
  Trace files can be loaded and visualized from:
74

75
76
77
78
79
80
81
82
  1. https://ui.perfetto.dev/ (any browser)
  2. chrome://tracing (Chrome browser only)

  If browser cannot open trace file due to its large size,
  client can generate a small trace file (<100MB) by controlling number of prompts and lengths of prompt outputs.
  For example, when profiling a server,

  ```bash
83
  python -m sglang.bench_serving --backend sglang --model meta-llama/Llama-3.1-8B-Instruct --num-prompts 2 --sharegpt-output-len 100 --profile
84
85
86
  ```

  This command sets the number of prompts to 2 with `--num-prompts` argument and limits the length of output sequences to 100 with `--sharegpt-output-len` argument, which can generate a small trace file for browser to open smoothly.
87

88
  Additionally, if you want to locate the SGLang Python source code through the cuda kernel in Trace, you need to disable CUDA Graph when starting the service. This can be done by using the `--disable-cuda-graph` parameter in the command to start the service.
89

Lianmin Zheng's avatar
Lianmin Zheng committed
90
## Profile with Nsight
91

92
93
94
[Nsight systems](https://docs.nvidia.com/nsight-systems/) is an advanced tool that exposes more profiling details, such as register and shared memory usage, annotated code regions and low-level CUDA APIs and events.

1. Prerequisite:
95

96
   Install using apt, or run inside a [NVIDIA Docker container](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch/tags) or [SGLang Docker container](https://github.com/sgl-project/sglang/tree/main/docker).
Lianmin Zheng's avatar
Lianmin Zheng committed
97

98
99
100
101
102
103
104
105
106
107
   ```bash
   # install nsys
   # https://docs.nvidia.com/nsight-systems/InstallationGuide/index.html
   apt update
   apt install -y --no-install-recommends gnupg
   echo "deb http://developer.download.nvidia.com/devtools/repos/ubuntu$(source /etc/lsb-release; echo "$DISTRIB_RELEASE" | tr -d .)/$(dpkg --print-architecture) /" | tee /etc/apt/sources.list.d/nvidia-devtools.list
   apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
   apt update
   apt install nsight-systems-cli
   ```
Lianmin Zheng's avatar
Lianmin Zheng committed
108

109
2. To profile a single batch, use
Lianmin Zheng's avatar
Lianmin Zheng committed
110

111
112
113
   ```bash
   nsys profile --trace-fork-before-exec=true --cuda-graph-trace=node python3 -m sglang.bench_one_batch --model meta-llama/Meta-Llama-3-8B --batch-size 64 --input-len 512
   ```
114

115
3. To profile a server, e.g.
Lianmin Zheng's avatar
Lianmin Zheng committed
116

117
118
119
   ```bash
   # launch the server, set the delay and duration times according to needs
   # after the duration time has been used up, server will be killed by nsys
Lianmin Zheng's avatar
Lianmin Zheng committed
120

121
   nsys profile --trace-fork-before-exec=true --cuda-graph-trace=node -o sglang.out --delay 60 --duration 70 python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --disable-radix-cache
122

123
124
125
   # client
   python3 -m sglang.bench_serving --backend sglang --num-prompts 1000 --dataset-name random --random-input 1024 --random-output 512
   ```
126

127
   In practice, we recommend users to set `--duration` argument to a large value. Whenever user wants the server to stop profiling. Firstly run:
128

129
130
131
   ```bash
   nsys sessions list
   ```
132

133
   to get the session id in the form of `profile-XXXXX`, then run:
134

135
136
137
   ```bash
   nsys stop --session=profile-XXXXX
   ```
Lianmin Zheng's avatar
Lianmin Zheng committed
138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
   to manually kill the profiler and generate `nsys-rep` files instantly.

4. Use NVTX to annotate code regions, e.g. to see their execution time.

   ```bash
   # install nvtx
   pip install nvtx
   ```

   ```python
   # code snippets
   import nvtx
   with nvtx.annotate("description", color="color"):
       # some critical code
   ```
154
155

## Other tips
156

157
1. You can benchmark a model using dummy weights by only providing the config.json file. This allows for quick testing of model variants without training. To do so, add `--load-format dummy` to the above commands and then you only need a correct `config.json` under the checkpoint folder.
158
159
160
161
162
163
2. You can benchmark a model with modified configs (e.g., less layers) by using `--json-model-override-args`. For example, you can benchmark a model with only 2 layers and 2 kv heads using:

   ```bash
   python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --batch 32 --input-len 256 --output-len 32 --load-format dummy --json-model-override-args '{"num_hidden_layers": 1, "num_key_value_heads": 1}'
   ```

164
3. You can use `--python-backtrace=cuda` to see python call stack for all CUDA kernels, as in PyTorch Profiler. (Caveat: this can cause inaccurately long kernel runtimes for CUDA event based timing)
165
4. For more arguments see [Nsight Systems User Guide](https://docs.nvidia.com/nsight-systems/UserGuide/index.html).