test_generation_models.py 5.55 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
16
"""
Usage:

Kiv Chen's avatar
Kiv Chen committed
17
18
19
To test a specific model locally:
1. Add it to ALL_MODELS, for example, `ModelCase("Qwen/Qwen2-1.5B")`
2. Run `ONLY_RUN=Qwen/Qwen2-1.5B python3 -m unittest test_generation_models.TestGenerationModels`
20
21
22
"""

import dataclasses
23
import multiprocessing as mp
24
import os
Kiv Chen's avatar
Kiv Chen committed
25
import random
26
import unittest
27
from typing import List
28
29
30

import torch

31
32
33
34
35
36
from sglang.test.runners import (
    DEFAULT_PROMPTS,
    HFRunner,
    SRTRunner,
    check_close_model_outputs,
)
37
from sglang.test.test_utils import CustomTestCase, is_in_ci
38

39

40
41
42
43
44
@dataclasses.dataclass
class ModelCase:
    model_path: str
    tp_size: int = 1
    prefill_tolerance: float = 5e-2
45
    decode_tolerance: float = 6e-2  # Increased to fix numerical error in issue #8614.
46
    rouge_l_tolerance: float = 1
47
    skip_long_prompt: bool = False
48
    trust_remote_code: bool = False
49
50


51
# Popular models that run on the CI
52
CI_MODELS = [
53
    ModelCase("meta-llama/Llama-3.1-8B-Instruct"),
54
    ModelCase("google/gemma-2-2b"),
55
]
56

Kiv Chen's avatar
Kiv Chen committed
57
58
59
# the complete set of models to test sglang's generation model
ALL_MODELS = [
    *CI_MODELS,
60
    ModelCase("Qwen/Qwen2-1.5B"),
61
    ModelCase("Qwen/Qwen2.5-14B-Instruct"),
62
63
    ModelCase("HuggingFaceTB/SmolLM-135M-Instruct", skip_long_prompt=True),
    ModelCase("allenai/OLMo-1B-0724-hf", decode_tolerance=8e-2, skip_long_prompt=True),
64
65
66
    ModelCase(
        "THUDM/glm-4-9b-chat", tp_size=2, trust_remote_code=True, skip_long_prompt=True
    ),
Chayenne's avatar
Chayenne committed
67
    ModelCase("openai-community/gpt2"),
68
    ModelCase("microsoft/phi-1_5", trust_remote_code=True),
69
    ModelCase("adept/persimmon-8b-chat"),
Kiv Chen's avatar
Kiv Chen committed
70
    ModelCase("microsoft/Phi-3-small-8k-instruct", trust_remote_code=True),
Jani Monoses's avatar
Jani Monoses committed
71
    ModelCase("allenai/OLMo-2-1124-7B-Instruct", skip_long_prompt=True),
72
    ModelCase("ibm-granite/granite-3.0-2b-instruct", skip_long_prompt=True),
73
74
75
76
77
78
    ModelCase(
        "microsoft/Phi-3.5-MoE-instruct",
        tp_size=2,
        trust_remote_code=True,
        skip_long_prompt=True,
    ),
79
]
80

81
TORCH_DTYPES = [torch.float16]
82
83


84
class TestGenerationModels(CustomTestCase):
85

86
87
    @classmethod
    def setUpClass(cls):
88
        mp.set_start_method("spawn", force=True)
89

90
    def assert_close_logits_and_output_strs(
91
        self,
92
93
94
        prompts: List[str],
        model_case: ModelCase,
        torch_dtype: torch.dtype,
95
    ) -> None:
96
97
98
99
100
101
102
        model_path = model_case.model_path
        prefill_tolerance, decode_tolerance, rouge_l_tolerance = (
            model_case.prefill_tolerance,
            model_case.decode_tolerance,
            model_case.rouge_l_tolerance,
        )
        max_new_tokens = 32
103

104
        with HFRunner(
105
106
107
            model_path,
            torch_dtype=torch_dtype,
            model_type="generation",
108
            trust_remote_code=model_case.trust_remote_code,
109
        ) as hf_runner:
110
            hf_outputs = hf_runner.forward(prompts, max_new_tokens=max_new_tokens)
111
112
113

        with SRTRunner(
            model_path,
114
            tp_size=model_case.tp_size,
115
            torch_dtype=torch_dtype,
116
            model_type="generation",
117
            trust_remote_code=model_case.trust_remote_code,
118
        ) as srt_runner:
119
            srt_outputs = srt_runner.forward(prompts, max_new_tokens=max_new_tokens)
120

121
122
123
124
125
126
127
        check_close_model_outputs(
            hf_outputs=hf_outputs,
            srt_outputs=srt_outputs,
            prefill_tolerance=model_case.prefill_tolerance,
            decode_tolerance=model_case.decode_tolerance,
            rouge_l_tolerance=model_case.rouge_l_tolerance,
            debug_text=f"model_path={model_path} prompts={prompts}",
128
        )
129

Kiv Chen's avatar
Kiv Chen committed
130
    @unittest.skipIf(not is_in_ci(), "Local test should run all models")
131
132
    def test_ci_models(self):
        for model_case in CI_MODELS:
133
            for torch_dtype in TORCH_DTYPES:
Kiv Chen's avatar
Kiv Chen committed
134
                prompts = DEFAULT_PROMPTS
135
136
137
138
139
140

                # Skip long prompts for models that do not have a long context
                if model_case.skip_long_prompt:
                    prompts = [p for p in DEFAULT_PROMPTS if len(p) < 1000]

                # Assert the logits and output strs are close
141
                self.assert_close_logits_and_output_strs(
142
                    prompts, model_case, torch_dtype
143
144
                )

Kiv Chen's avatar
Kiv Chen committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    @unittest.skipIf(is_in_ci(), "CI only runs selected models for simplicity")
    def test_all_models(self):
        for model_case in ALL_MODELS:
            for torch_dtype in TORCH_DTYPES:
                if (
                    "ONLY_RUN" in os.environ
                    and os.environ["ONLY_RUN"] != model_case.model_path
                ):
                    continue

                # Skip long prompts for models that do not have a long context
                prompts = DEFAULT_PROMPTS
                if model_case.skip_long_prompt:
                    prompts = [p for p in DEFAULT_PROMPTS if len(p) < 1000]

                # Assert the logits and output strs are close
                self.assert_close_logits_and_output_strs(
                    prompts, model_case, torch_dtype
                )
164

165

166
if __name__ == "__main__":
Mingyi's avatar
Mingyi committed
167
    unittest.main()