install.md 7.77 KB
Newer Older
1
# Install SGLang
2

3
You can install SGLang using any of the methods below.
4

5
6
7
For running DeepSeek V3/R1, refer to [DeepSeek V3 Support](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3). It is recommended to use the latest version and deploy it with [Docker](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#using-docker-recommended) to avoid environment-related issues.

It is recommended to use uv to install the dependencies for faster installation:
8

9
## Method 1: With pip or uv
10
11

```bash
12
pip install --upgrade pip
13
pip install uv
14
uv pip install "sglang[all]>=0.4.9.post5"
15
16
```

17
**Quick Fixes to Common Problems**
18

19
- SGLang currently uses torch 2.7.1, so you need to install flashinfer for torch 2.7.1. If you want to install flashinfer separately, please refer to [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html). Please note that the FlashInfer pypi package is called `flashinfer-python` instead of `flashinfer`.
20

21
- If you encounter `OSError: CUDA_HOME environment variable is not set`. Please set it to your CUDA install root with either of the following solutions:
22

23
24
  1. Use `export CUDA_HOME=/usr/local/cuda-<your-cuda-version>` to set the `CUDA_HOME` environment variable.
  2. Install FlashInfer first following [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html), then install SGLang as described above.
simveit's avatar
simveit committed
25

26
## Method 2: From source
27
28

```bash
29
# Use the last release branch
30
git clone -b v0.4.9.post5 https://github.com/sgl-project/sglang.git
31
cd sglang
32

33
pip install --upgrade pip
34
pip install -e "python[all]"
35
```
36

37
Note: SGLang currently uses torch 2.7.1, so you need to install flashinfer for torch 2.7.1. If you want to install flashinfer separately, please refer to [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html).
Yineng Zhang's avatar
Yineng Zhang committed
38

linzhuo's avatar
linzhuo committed
39
If you want to develop SGLang, it is recommended to use docker. Please refer to [setup docker container](https://github.com/sgl-project/sglang/blob/main/docs/references/development_guide_using_docker.md#setup-docker-container) for guidance. The docker image is `lmsysorg/sglang:dev`.
Lianmin Zheng's avatar
Lianmin Zheng committed
40

41
Note: For AMD ROCm system with Instinct/MI GPUs, do following instead:
42

43
```bash
44
# Use the last release branch
45
git clone -b v0.4.9.post5 https://github.com/sgl-project/sglang.git
46
47
48
cd sglang

pip install --upgrade pip
49
50
51
cd sgl-kernel
python setup_rocm.py install
cd ..
52
53
54
pip install -e "python[all_hip]"
```

55
56
57
Note: Please refer to [the CPU environment setup command list](../references/cpu.md#install-from-source)
to set up the SGLang environment for running the models with CPU servers.

58
## Method 3: Using docker
59

60
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](https://github.com/sgl-project/sglang/tree/main/docker).
61
Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
62
63

```bash
64
docker run --gpus all \
65
    --shm-size 32g \
66
    -p 30000:30000 \
67
    -v ~/.cache/huggingface:/root/.cache/huggingface \
68
69
    --env "HF_TOKEN=<secret>" \
    --ipc=host \
70
    lmsysorg/sglang:latest \
71
    python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
72
73
```

74
Note: For AMD ROCm system with Instinct/MI GPUs, it is recommended to use `docker/Dockerfile.rocm` to build images, example and usage as below:
75
76

```bash
77
docker build --build-arg SGL_BRANCH=v0.4.9.post5 -t v0.4.9.post5-rocm630 -f Dockerfile.rocm .
78
79
80
81
82
83
84
85

alias drun='docker run -it --rm --network=host --device=/dev/kfd --device=/dev/dri --ipc=host \
    --shm-size 16G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
    -v $HOME/dockerx:/dockerx -v /data:/data'

drun -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --env "HF_TOKEN=<secret>" \
86
    v0.4.9.post5-rocm630 \
87
88
89
    python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000

# Till flashinfer backend available, --attention-backend triton --sampling-backend pytorch are set by default
90
drun v0.4.9.post5-rocm630 python3 -m sglang.bench_one_batch --batch-size 32 --input 1024 --output 128 --model amd/Meta-Llama-3.1-8B-Instruct-FP8-KV --tp 8 --quantization fp8
91
92
```

93
94
95
Note: Please refer to [the CPU installation guide using Docker](../references/cpu.md#install-using-docker)
to set up the SGLang environment for running the models with CPU servers.

96
## Method 4: Using docker compose
97
98
99

<details>
<summary>More</summary>
100

101
> This method is recommended if you plan to serve it as a service.
Lianmin Zheng's avatar
Lianmin Zheng committed
102
> A better approach is to use the [k8s-sglang-service.yaml](https://github.com/sgl-project/sglang/blob/main/docker/k8s-sglang-service.yaml).
103

Lianmin Zheng's avatar
Lianmin Zheng committed
104
1. Copy the [compose.yml](https://github.com/sgl-project/sglang/blob/main/docker/compose.yaml) to your local machine
105
2. Execute the command `docker compose up -d` in your terminal.
106
</details>
107

108
109
110
111
112
113
## Method 5: Using Kubernetes

<details>
<summary>More</summary>

1. Option 1: For single node serving (typically when the model size fits into GPUs on one node)
114

115
116
117
118
   Execute command `kubectl apply -f docker/k8s-sglang-service.yaml`, to create k8s deployment and service, with llama-31-8b as example.

2. Option 2: For multi-node serving (usually when a large model requires more than one GPU node, such as `DeepSeek-R1`)

119
   Modify the LLM model path and arguments as necessary, then execute command `kubectl apply -f docker/k8s-sglang-distributed-sts.yaml`, to create two nodes k8s statefulset and serving service.
120

121
</details>
122
123

## Method 6: Run on Kubernetes or Clouds with SkyPilot
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

<details>
<summary>More</summary>

To deploy on Kubernetes or 12+ clouds, you can use [SkyPilot](https://github.com/skypilot-org/skypilot).

1. Install SkyPilot and set up Kubernetes cluster or cloud access: see [SkyPilot's documentation](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html).
2. Deploy on your own infra with a single command and get the HTTP API endpoint:
<details>
<summary>SkyPilot YAML: <code>sglang.yaml</code></summary>

```yaml
# sglang.yaml
envs:
  HF_TOKEN: null

resources:
  image_id: docker:lmsysorg/sglang:latest
  accelerators: A100
  ports: 30000

run: |
  conda deactivate
  python3 -m sglang.launch_server \
148
    --model-path meta-llama/Llama-3.1-8B-Instruct \
149
150
151
    --host 0.0.0.0 \
    --port 30000
```
152

153
154
155
156
157
158
159
160
161
</details>

```bash
# Deploy on any cloud or Kubernetes cluster. Use --cloud <cloud> to select a specific cloud provider.
HF_TOKEN=<secret> sky launch -c sglang --env HF_TOKEN sglang.yaml

# Get the HTTP API endpoint
sky status --endpoint 30000 sglang
```
162

163
164
165
3. To further scale up your deployment with autoscaling and failure recovery, check out the [SkyServe + SGLang guide](https://github.com/skypilot-org/skypilot/tree/master/llm/sglang#serving-llama-2-with-sglang-for-more-traffic-using-skyserve).
</details>

166
## Common Notes
167

Lianmin Zheng's avatar
Lianmin Zheng committed
168
- [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is the default attention kernel backend. It only supports sm75 and above. If you encounter any FlashInfer-related issues on sm75+ devices (e.g., T4, A10, A100, L4, L40S, H100), please switch to other kernels by adding `--attention-backend triton --sampling-backend pytorch` and open an issue on GitHub.
Lianmin Zheng's avatar
Lianmin Zheng committed
169
- If you only need to use OpenAI models with the frontend language, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Yineng Zhang's avatar
Yineng Zhang committed
170
- The language frontend operates independently of the backend runtime. You can install the frontend locally without needing a GPU, while the backend can be set up on a GPU-enabled machine. To install the frontend, run `pip install sglang`, and for the backend, use `pip install sglang[srt]`. `srt` is the abbreviation of SGLang runtime.
171
- To reinstall flashinfer locally, use the following command: `pip3 install --upgrade flashinfer-python --force-reinstall --no-deps` and then delete the cache with `rm -rf ~/.cache/flashinfer`.