test_vision_openai_server_common.py 16.6 KB
Newer Older
1
import base64
2
import copy
3
import io
Ying Sheng's avatar
Ying Sheng committed
4
import json
5
import os
6
from concurrent.futures import ThreadPoolExecutor
Ying Sheng's avatar
Ying Sheng committed
7

8
import numpy as np
Ying Sheng's avatar
Ying Sheng committed
9
import openai
10
11
import requests
from PIL import Image
Ying Sheng's avatar
Ying Sheng committed
12

13
from sglang.srt.utils import kill_process_tree
14
15
16
from sglang.test.test_utils import (
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
17
    CustomTestCase,
18
19
    popen_launch_server,
)
Ying Sheng's avatar
Ying Sheng committed
20

21
22
23
24
25
26
27
28
29
30
31
# image
IMAGE_MAN_IRONING_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/images/man_ironing_on_back_of_suv.png"
IMAGE_SGL_LOGO_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/images/sgl_logo.png"

# video
VIDEO_JOBS_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/videos/jobs_presenting_ipod.mp4"

# audio
AUDIO_TRUMP_SPEECH_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/audios/Trump_WEF_2018_10s.mp3"
AUDIO_BIRD_SONG_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/audios/bird_song.mp3"

Ying Sheng's avatar
Ying Sheng committed
32

33
class TestOpenAIVisionServer(CustomTestCase):
Ying Sheng's avatar
Ying Sheng committed
34
35
    @classmethod
    def setUpClass(cls):
36
        cls.model = "lmms-lab/llava-onevision-qwen2-0.5b-ov"
37
        cls.base_url = DEFAULT_URL_FOR_TEST
Ying Sheng's avatar
Ying Sheng committed
38
39
40
41
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
42
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
Ying Sheng's avatar
Ying Sheng committed
43
44
45
46
47
48
            api_key=cls.api_key,
        )
        cls.base_url += "/v1"

    @classmethod
    def tearDownClass(cls):
49
        kill_process_tree(cls.process.pid)
Ying Sheng's avatar
Ying Sheng committed
50

51
52
53
    def get_request_kwargs(self):
        return {}

54
    def test_single_image_chat_completion(self):
Ying Sheng's avatar
Ying Sheng committed
55
56
57
58
59
60
61
62
63
64
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
65
                            "image_url": {"url": IMAGE_MAN_IRONING_URL},
Ying Sheng's avatar
Ying Sheng committed
66
                        },
Ying Sheng's avatar
Ying Sheng committed
67
68
69
70
                        {
                            "type": "text",
                            "text": "Describe this image in a very short sentence.",
                        },
Ying Sheng's avatar
Ying Sheng committed
71
72
73
74
                    ],
                },
            ],
            temperature=0,
75
            **(self.get_request_kwargs()),
Ying Sheng's avatar
Ying Sheng committed
76
77
78
        )

        assert response.choices[0].message.role == "assistant"
Ying Sheng's avatar
Ying Sheng committed
79
80
        text = response.choices[0].message.content
        assert isinstance(text, str)
81
        # `driver` is for gemma-3-it
82
83
84
85
86
87
88
89
90
91
        assert (
            "man" in text or "person" or "driver" in text
        ), f"text: {text}, should contain man, person or driver"
        assert (
            "cab" in text
            or "taxi" in text
            or "SUV" in text
            or "vehicle" in text
            or "car" in text
        ), f"text: {text}, should contain cab, taxi, SUV, vehicle or car"
Mick's avatar
Mick committed
92
        # MiniCPMO fails to recognize `iron`, but `hanging`
93
94
95
        assert (
            "iron" in text or "hang" in text or "cloth" in text or "holding" in text
        ), f"text: {text}, should contain iron, hang, cloth or holding"
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

    def test_multi_turn_chat_completion(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
113
                            "image_url": {"url": IMAGE_MAN_IRONING_URL},
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
                        },
                        {
                            "type": "text",
                            "text": "Describe this image in a very short sentence.",
                        },
                    ],
                },
                {
                    "role": "assistant",
                    "content": [
                        {
                            "type": "text",
                            "text": "There is a man at the back of a yellow cab ironing his clothes.",
                        }
                    ],
                },
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "Repeat your previous answer."}
                    ],
                },
            ],
            temperature=0,
138
            **(self.get_request_kwargs()),
139
140
141
142
143
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)
144
145
146
        assert (
            "man" in text or "cab" in text
        ), f"text: {text}, should contain man or cab"
Ying Sheng's avatar
Ying Sheng committed
147
148
149
150
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
151
152
        assert response.usage.total_tokens > 0

153
    def test_multi_images_chat_completion(self):
154
155
156
157
158
159
160
161
162
163
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
Mick's avatar
Mick committed
164
                            "image_url": {"url": IMAGE_MAN_IRONING_URL},
165
                            "modalities": "multi-images",
166
167
168
                        },
                        {
                            "type": "image_url",
169
                            "image_url": {"url": IMAGE_SGL_LOGO_URL},
170
                            "modalities": "multi-images",
171
172
173
                        },
                        {
                            "type": "text",
174
175
                            "text": "I have two very different images. They are not related at all. "
                            "Please describe the first image in one sentence, and then describe the second image in another sentence.",
176
177
178
179
180
                        },
                    ],
                },
            ],
            temperature=0,
181
            **(self.get_request_kwargs()),
182
183
184
185
186
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)
Mick's avatar
Mick committed
187
188
189
        print("-" * 30)
        print(f"Multi images response:\n{text}")
        print("-" * 30)
190
191
192
193
194
195
        assert (
            "man" in text or "cab" in text or "SUV" in text or "taxi" in text
        ), f"text: {text}, should contain man, cab, SUV or taxi"
        assert (
            "logo" in text or '"S"' in text or "SG" in text
        ), f"text: {text}, should contain logo, S or SG"
196
197
198
199
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
Ying Sheng's avatar
Ying Sheng committed
200
201
        assert response.usage.total_tokens > 0

202
    def prepare_video_messages(self, video_path):
203
204
        # the memory consumed by the Vision Attention varies a lot, e.g. blocked qkv vs full-sequence sdpa
        # the size of the video embeds differs from the `modality` argument when preprocessed
205
206
207
208
209
210
211

        # We import decord here to avoid a strange Segmentation fault (core dumped) issue.
        # The following import order will cause Segmentation fault.
        # import decord
        # from transformers import AutoTokenizer
        from decord import VideoReader, cpu

212
        max_frames_num = 20
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        vr = VideoReader(video_path, ctx=cpu(0))
        total_frame_num = len(vr)
        uniform_sampled_frames = np.linspace(
            0, total_frame_num - 1, max_frames_num, dtype=int
        )
        frame_idx = uniform_sampled_frames.tolist()
        frames = vr.get_batch(frame_idx).asnumpy()

        base64_frames = []
        for frame in frames:
            pil_img = Image.fromarray(frame)
            buff = io.BytesIO()
            pil_img.save(buff, format="JPEG")
            base64_str = base64.b64encode(buff.getvalue()).decode("utf-8")
            base64_frames.append(base64_str)

        messages = [{"role": "user", "content": []}]
        frame_format = {
            "type": "image_url",
            "image_url": {"url": "data:image/jpeg;base64,{}"},
233
            "modalities": "video",
234
235
236
237
238
239
240
241
242
243
244
245
246
        }

        for base64_frame in base64_frames:
            frame_format["image_url"]["url"] = "data:image/jpeg;base64,{}".format(
                base64_frame
            )
            messages[0]["content"].append(frame_format.copy())

        prompt = {"type": "text", "text": "Please describe the video in detail."}
        messages[0]["content"].append(prompt)

        return messages

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    def prepare_video_messages_video_direct(self, video_path):
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "image_url",
                        "image_url": {"url": f"video:{video_path}"},
                        "modalities": "video",
                    },
                    {"type": "text", "text": "Please describe the video in detail."},
                ],
            },
        ]
        return messages

263
    def get_or_download_file(self, url: str) -> str:
264
        cache_dir = os.path.expanduser("~/.cache")
265
266
267
268
        if url is None:
            raise ValueError()
        file_name = url.split("/")[-1]
        file_path = os.path.join(cache_dir, file_name)
269
270
271
272
273
274
275
276
        os.makedirs(cache_dir, exist_ok=True)

        if not os.path.exists(file_path):
            response = requests.get(url)
            response.raise_for_status()

            with open(file_path, "wb") as f:
                f.write(response.content)
277
278
279
280
281
        return file_path

    def test_video_chat_completion(self):
        url = VIDEO_JOBS_URL
        file_path = self.get_or_download_file(url)
282
283
284

        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

285
        # messages = self.prepare_video_messages_video_direct(file_path)
286
287
        messages = self.prepare_video_messages(file_path)

Mick's avatar
Mick committed
288
        response = client.chat.completions.create(
289
290
291
292
            model="default",
            messages=messages,
            temperature=0,
            max_tokens=1024,
Mick's avatar
Mick committed
293
            stream=False,
294
            **(self.get_request_kwargs()),
295
        )
296

Mick's avatar
Mick committed
297
298
        video_response = response.choices[0].message.content

299
        print("-" * 30)
Mick's avatar
Mick committed
300
        print(f"Video response:\n{video_response}")
301
302
303
        print("-" * 30)

        # Add assertions to validate the video response
304
305
306
        assert (
            "iPod" in video_response or "device" in video_response
        ), f"video_response: {video_response}, should contain 'iPod' or 'device'"
Mick's avatar
Mick committed
307
308
309
310
        assert (
            "man" in video_response
            or "person" in video_response
            or "individual" in video_response
311
            or "speaker" in video_response
312
        ), f"video_response: {video_response}, should either have 'man' in video_response, or 'person' in video_response, or 'individual' in video_response or 'speaker' in video_response"
Mick's avatar
Mick committed
313
314
315
316
        assert (
            "present" in video_response
            or "examine" in video_response
            or "display" in video_response
317
            or "hold" in video_response
318
319
320
321
        ), f"video_response: {video_response}, should contain 'present', 'examine', 'display', or 'hold'"
        assert (
            "black" in video_response or "dark" in video_response
        ), f"video_response: {video_response}, should contain 'black' or 'dark'"
322
323
324
        self.assertIsNotNone(video_response)
        self.assertGreater(len(video_response), 0)

Ying Sheng's avatar
Ying Sheng committed
325
326
327
328
    def test_regex(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        regex = (
329
330
331
            r"""\{"""
            + r""""color":"[\w]+","""
            + r""""number_of_cars":[\d]+"""
Ying Sheng's avatar
Ying Sheng committed
332
333
334
            + r"""\}"""
        )

335
336
337
        extra_kwargs = self.get_request_kwargs()
        extra_kwargs.setdefault("extra_body", {})["regex"] = regex

Ying Sheng's avatar
Ying Sheng committed
338
339
340
341
342
343
344
345
        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
346
                            "image_url": {"url": IMAGE_MAN_IRONING_URL},
Ying Sheng's avatar
Ying Sheng committed
347
348
349
350
351
352
353
354
355
                        },
                        {
                            "type": "text",
                            "text": "Describe this image in the JSON format.",
                        },
                    ],
                },
            ],
            temperature=0,
356
            **extra_kwargs,
Ying Sheng's avatar
Ying Sheng committed
357
358
359
360
361
362
363
364
365
366
367
        )
        text = response.choices[0].message.content

        try:
            js_obj = json.loads(text)
        except (TypeError, json.decoder.JSONDecodeError):
            print("JSONDecodeError", text)
            raise
        assert isinstance(js_obj["color"], str)
        assert isinstance(js_obj["number_of_cars"], int)

368
369
370
371
372
373
374
375
    def run_decode_with_image(self, image_id):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        content = []
        if image_id == 0:
            content.append(
                {
                    "type": "image_url",
376
                    "image_url": {"url": IMAGE_MAN_IRONING_URL},
377
378
379
380
381
382
                }
            )
        elif image_id == 1:
            content.append(
                {
                    "type": "image_url",
383
                    "image_url": {"url": IMAGE_SGL_LOGO_URL},
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
                }
            )
        else:
            pass

        content.append(
            {
                "type": "text",
                "text": "Describe this image in a very short sentence.",
            }
        )

        response = client.chat.completions.create(
            model="default",
            messages=[
                {"role": "user", "content": content},
            ],
            temperature=0,
402
            **(self.get_request_kwargs()),
403
404
405
406
407
408
409
410
411
412
413
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)

    def test_mixed_batch(self):
        image_ids = [0, 1, 2] * 4
        with ThreadPoolExecutor(4) as executor:
            list(executor.map(self.run_decode_with_image, image_ids))

Mick's avatar
Mick committed
414
415
416
417
418
419
420
421
422
    def prepare_audio_messages(self, prompt, audio_file_name):
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "audio_url",
                        "audio_url": {"url": f"{audio_file_name}"},
                    },
Mick's avatar
Mick committed
423
424
425
426
                    {
                        "type": "text",
                        "text": prompt,
                    },
Mick's avatar
Mick committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
                ],
            }
        ]

        return messages

    def get_audio_response(self, url: str, prompt, category):
        audio_file_path = self.get_or_download_file(url)
        client = openai.Client(api_key="sk-123456", base_url=self.base_url)

        messages = self.prepare_audio_messages(prompt, audio_file_path)

        response = client.chat.completions.create(
            model="default",
            messages=messages,
            temperature=0,
            max_tokens=128,
            stream=False,
445
            **(self.get_request_kwargs()),
Mick's avatar
Mick committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        )

        audio_response = response.choices[0].message.content

        print("-" * 30)
        print(f"audio {category} response:\n{audio_response}")
        print("-" * 30)

        audio_response = audio_response.lower()

        self.assertIsNotNone(audio_response)
        self.assertGreater(len(audio_response), 0)

        return audio_response

    def _test_audio_speech_completion(self):
        # a fragment of Trump's speech
        audio_response = self.get_audio_response(
            AUDIO_TRUMP_SPEECH_URL,
            "I have an audio sample. Please repeat the person's words",
            category="speech",
        )
        assert "thank you" in audio_response
        assert "it's a privilege to be here" in audio_response
        assert "leader" in audio_response
        assert "science" in audio_response
        assert "art" in audio_response

    def _test_audio_ambient_completion(self):
        # bird song
        audio_response = self.get_audio_response(
            AUDIO_BIRD_SONG_URL,
            "Please listen to the audio snippet carefully and transcribe the content.",
            "ambient",
        )
        assert "bird" in audio_response

    def test_audio_chat_completion(self):
        pass