backend.md 7.44 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is an efficient serving engine.

### Quick Start
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
```

Send a request
```
curl http://localhost:30000/generate \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Once upon a time,",
    "sampling_params": {
      "max_new_tokens": 16,
      "temperature": 0
    }
  }'
```
Yineng Zhang's avatar
Yineng Zhang committed
22
Learn more about the argument format [here](https://sglang.readthedocs.io/en/latest/sampling_params.html).
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

### OpenAI Compatible API
In addition, the server supports OpenAI-compatible APIs.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")

# Text completion
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)

# Text embedding
response = client.embeddings.create(
    model="default",
    input="How are you today",
)
print(response)
```

It supports streaming, vision, and most features of the Chat/Completions/Models/Batch endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).

### Additional Server Arguments
Lianmin Zheng's avatar
Lianmin Zheng committed
64
- To enable multi-GPU tensor parallelism, add `--tp 2`. If it reports the error "peer access is not supported between these two devices", add `--enable-p2p-check` to the server launch command.
65
```
Lianmin Zheng's avatar
Lianmin Zheng committed
66
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 2
67
```
Lianmin Zheng's avatar
Lianmin Zheng committed
68
- To enable multi-GPU data parallelism, add `--dp 2`. Data parallelism is better for throughput if there is enough memory. It can also be used together with tensor parallelism. The following command uses 4 GPUs in total.
69
```
Lianmin Zheng's avatar
Lianmin Zheng committed
70
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --dp 2 --tp 2
71
72
73
```
- If you see out-of-memory errors during serving, try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`.
```
Lianmin Zheng's avatar
Lianmin Zheng committed
74
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --mem-fraction-static 0.7
75
```
Yineng Zhang's avatar
Yineng Zhang committed
76
- See [hyperparameter tuning](https://sglang.readthedocs.io/en/latest/hyperparameter_tuning.html) on tuning hyperparameters for better performance.
77
78
- If you see out-of-memory errors during prefill for long prompts, try to set a smaller chunked prefill size.
```
Lianmin Zheng's avatar
Lianmin Zheng committed
79
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --chunked-prefill-size 4096
80
```
Lianmin Zheng's avatar
Lianmin Zheng committed
81
82
83
- To enable torch.compile acceleration, add `--enable-torch-compile`. It accelerates small models on small batch sizes.
- To enable fp8 weight quantization, add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
- To enable fp8 kv cache quantization, add `--kv-cache-dtype fp8_e5m2`.
Yineng Zhang's avatar
Yineng Zhang committed
84
- If the model does not have a chat template in the Hugging Face tokenizer, you can specify a [custom chat template](https://sglang.readthedocs.io/en/latest/custom_chat_template.html).
Lianmin Zheng's avatar
Lianmin Zheng committed
85
- To run tensor parallelism on multiple nodes, add `--nnodes 2`. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port.
86
87
88
89
90
91
92
```
# Node 0
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 0

# Node 1
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
```
93

94
95
96
97
98
99
100
101
102
103
104
### Supported Models

**Generative Models**
- Llama / Llama 2 / Llama 3 / Llama 3.1
- Mistral / Mixtral / Mistral NeMo
- Gemma / Gemma 2
- Qwen / Qwen 2 / Qwen 2 MoE
- DeepSeek / DeepSeek 2
- [LLaVA-OneVision](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)
  - `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-7b-ov --port=30000 --chat-template=chatml-llava`
  - `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-72b-ov --port=30000 --tp-size=8 --chat-template=chatml-llava`
105
  - Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](https://github.com/sgl-project/sglang/blob/main/test/srt/test_vision_openai_server.py)
106
107
108
- LLaVA 1.5 / 1.6 / NeXT
  - `python -m sglang.launch_server --model-path lmms-lab/llama3-llava-next-8b --port=30000 --tp-size=1 --chat-template=llava_llama_3`
  - `python -m sglang.launch_server --model-path lmms-lab/llava-next-72b --port=30000 --tp-size=8 --chat-template=chatml-llava`
109
  - Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](https://github.com/sgl-project/sglang/blob/main/test/srt/test_vision_openai_server.py)
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
- Yi-VL
- StableLM
- Command-R
- DBRX
- Grok
- ChatGLM
- InternLM 2
- Exaone 3

**Embedding Models**

- e5-mistral
- gte-Qwen2
  - `python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct --is-embedding`

Yineng Zhang's avatar
Yineng Zhang committed
125
Instructions for supporting a new model are [here](https://sglang.readthedocs.io/en/latest/model_support.html).
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

#### Use Models From ModelScope
<details>
<summary>More</summary>

To use a model from [ModelScope](https://www.modelscope.cn), set the environment variable SGLANG_USE_MODELSCOPE.
```
export SGLANG_USE_MODELSCOPE=true
```
Launch [Qwen2-7B-Instruct](https://www.modelscope.cn/models/qwen/qwen2-7b-instruct) Server
```
SGLANG_USE_MODELSCOPE=true python -m sglang.launch_server --model-path qwen/Qwen2-7B-Instruct --port 30000
```
  
</details>

#### Run Llama 3.1 405B
<details>
<summary>More</summary>

```bash
# Run 405B (fp8) on a single node
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8

# Run 405B (fp16) on two nodes
## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph

## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph
```

</details>

### Benchmark Performance

- Benchmark a single static batch by running the following command without launching a server. The arguments are the same as for `launch_server.py`.
  Note that this is not a dynamic batching server, so it may run out of memory for a batch size that a real server can handle.
  A real server truncates the prefill into several batches, while this unit test does not. For accurate large batch testing, please use `sglang.bench_serving` instead.
  ```
  python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 32 --input-len 256 --output-len 32
  ```
- Benchmark online serving. Launch a server first and run the following command.
  ```
  python3 -m sglang.bench_serving --backend sglang --num-prompt 10
Lianmin Zheng's avatar
Lianmin Zheng committed
171
  ```