gemm.py 17.5 KB
Newer Older
1
from typing import Optional, Tuple
2
3

import torch
4
from sgl_kernel.scalar_type import ScalarType
5
from sgl_kernel.utils import _get_cache_buf, get_cuda_stream
6
7


8
9
10
def awq_dequantize(
    qweight: torch.Tensor, scales: torch.Tensor, qzeros: torch.Tensor
) -> torch.ByteTensor:
11
    return torch.ops.sgl_kernel.awq_dequantize.default(qweight, scales, qzeros)
12
13


14
def int8_scaled_mm(mat_a, mat_b, scales_a, scales_b, out_dtype, bias=None):
15
    return torch.ops.sgl_kernel.int8_scaled_mm.default(
16
17
18
19
20
21
22
23
24
25
        mat_a,
        mat_b,
        scales_a,
        scales_b,
        out_dtype,
        bias,
    )


def fp8_blockwise_scaled_mm(mat_a, mat_b, scales_a, scales_b, out_dtype):
26
    return torch.ops.sgl_kernel.fp8_blockwise_scaled_mm.default(
27
28
29
30
31
32
33
34
35
        mat_a,
        mat_b,
        scales_a,
        scales_b,
        out_dtype,
    )


def fp8_scaled_mm(mat_a, mat_b, scales_a, scales_b, out_dtype, bias=None):
36
    return torch.ops.sgl_kernel.fp8_scaled_mm.default(
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
        mat_a,
        mat_b,
        scales_a,
        scales_b,
        out_dtype,
        bias,
    )


def _bmm_fp8_internal(
    workspace_buffer: torch.Tensor,
    A: torch.Tensor,
    B: torch.Tensor,
    D: torch.Tensor,
    A_scale: torch.Tensor,
    B_scale: torch.Tensor,
) -> None:
    cublas_handle = torch.cuda.current_blas_handle()
55
    torch.ops.sgl_kernel.bmm_fp8.default(
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        A,
        B,
        D,
        A_scale,
        B_scale,
        workspace_buffer,
        cublas_handle,
        get_cuda_stream(),
    )


def bmm_fp8(
    A: torch.Tensor,
    B: torch.Tensor,
    A_scale: torch.Tensor,
    B_scale: torch.Tensor,
    dtype: torch.dtype,
    out: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    if out is None:
        out = torch.empty(
            (A.shape[0], A.shape[1], B.shape[2]),
            device=A.device,
            dtype=dtype,
        )
    workspace_buffer = _get_cache_buf("bmm_fp8_workspace", 32 * 1024 * 1024, A.device)
    _bmm_fp8_internal(workspace_buffer, A, B, out, A_scale, B_scale)
    return out


86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
def dsv3_fused_a_gemm(
    mat_a: torch.Tensor,
    mat_b: torch.Tensor,
    output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    if output is None:
        output = torch.empty(
            (mat_a.shape[0], mat_b.shape[1]),
            device=mat_a.device,
            dtype=mat_a.dtype,
        )
    torch.ops.sgl_kernel.dsv3_fused_a_gemm.default(output, mat_a, mat_b)
    return output


101
def sgl_per_token_group_quant_8bit(
102
103
104
105
106
107
108
    input: torch.Tensor,
    output_q: torch.Tensor,
    output_s: torch.Tensor,
    group_size: int,
    eps: float,
    fp8_min: float,
    fp8_max: float,
109
110
111
    scale_ue8m0: bool = False,
    fuse_silu_and_mul: bool = False,
    masked_m: Optional[torch.Tensor] = None,
112
) -> None:
113
114
115
116
117
118
119
120
121
122
123
    torch.ops.sgl_kernel.sgl_per_token_group_quant_8bit.default(
        input,
        output_q,
        output_s,
        group_size,
        eps,
        fp8_min,
        fp8_max,
        scale_ue8m0,
        fuse_silu_and_mul,
        masked_m,
124
125
126
    )


127
128
129
130
131
132
def sgl_per_tensor_quant_fp8(
    input: torch.Tensor,
    output_q: torch.Tensor,
    output_s: torch.Tensor,
    is_static: bool,
) -> None:
133
134
135
    torch.ops.sgl_kernel.sgl_per_tensor_quant_fp8.default(
        input, output_q, output_s, is_static
    )
136
137


138
139
140
141
142
def sgl_per_token_quant_fp8(
    input: torch.Tensor,
    output_q: torch.Tensor,
    output_s: torch.Tensor,
) -> None:
143
    torch.ops.sgl_kernel.sgl_per_token_quant_fp8.default(input, output_q, output_s)
Trevor Morris's avatar
Trevor Morris committed
144
145
146
147
148
149
150
151
152
153
154
155
156


def cutlass_scaled_fp4_mm(
    a: torch.Tensor,
    b: torch.Tensor,
    block_scale_a: torch.Tensor,
    block_scale_b: torch.Tensor,
    alpha: torch.Tensor,
    out_dtype: torch.dtype,
) -> torch.Tensor:
    assert a.ndim == 2 and b.ndim == 2
    m, n = a.shape[0], b.shape[0]
    out = torch.empty((m, n), dtype=out_dtype, device=a.device)
157
    torch.ops.sgl_kernel.cutlass_scaled_fp4_mm.default(
Trevor Morris's avatar
Trevor Morris committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        out, a, b, block_scale_a, block_scale_b, alpha
    )
    return out


def scaled_fp4_quant(
    input: torch.Tensor, input_global_scale: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Quantize input tensor to FP4 and return quantized tensor and scale.

    This function quantizes the last dimension of the given tensor `input`. For
    every 16 consecutive elements, a single dynamically computed scaling factor
    is shared. This scaling factor is quantized using the `input_global_scale`
    and is stored in a swizzled layout (see
    https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x).

    Args:
        input: The input tensor to be quantized to FP4
        input_global_scale: A scalar scaling factor for the entire tensor.

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: The output tensor in FP4 but every
            two values are packed into a uint8 and float8_e4m3 scaling factors
            in a sizzled layout.
    """
    assert input.ndim >= 1, f"input.ndim needs to be >= 1, but got {input.ndim}."
    other_dims = 1 if input.ndim == 1 else -1
    input = input.reshape(other_dims, input.shape[-1])
    m, n = input.shape
    block_size = 16
    device = input.device

    assert n % block_size == 0, f"last dim has to be multiple of 16, but got {n}."
    assert input.dtype in (
        torch.float16,
        torch.bfloat16,
    ), f"input.dtype needs to be fp16 or bf16 but got {input.dtype}."

    # Two fp4 values will be packed into an uint8.
    output = torch.empty((m, n // 2), device=device, dtype=torch.uint8)

    # We use the rounded values to store the swizzled values. Then, the scaling
    # factors in float8_e4m3fn are packed into an int32 for every 4 values.
    rounded_m = ((m + 128 - 1) // 128) * 128
    scale_n = n // block_size
    rounded_n = ((scale_n + 4 - 1) // 4) * 4
205
206
207
208
209
210
211
212
213
    # padded part should be zeroed out
    if rounded_n > scale_n:
        output_scale = torch.zeros(
            (rounded_m, rounded_n // 4), device=device, dtype=torch.int32
        )
    else:
        output_scale = torch.empty(
            (rounded_m, rounded_n // 4), device=device, dtype=torch.int32
        )
Trevor Morris's avatar
Trevor Morris committed
214

215
    torch.ops.sgl_kernel.scaled_fp4_quant.default(
Trevor Morris's avatar
Trevor Morris committed
216
217
218
219
        output, input, output_scale, input_global_scale
    )
    output_scale = output_scale.view(torch.float8_e4m3fn)
    return output, output_scale
HandH1998's avatar
HandH1998 committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263


def qserve_w4a8_per_chn_gemm(
    in_feats: torch.Tensor,
    kernel: torch.Tensor,
    wscales: torch.Tensor,
    ascales: torch.Tensor,
    w_szs: torch.Tensor,
    a_ssums: torch.Tensor,
    out_feats: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    if out_feats is None:
        # NOTE(HandH1998): qserve_w4a8_per_chn_gemm only supports out dtype=torch.float16 now
        out_feats = torch.empty(
            (in_feats.shape[0], kernel.shape[0]),
            device=in_feats.device,
            dtype=torch.float16,
        )
    torch.ops.sgl_kernel.qserve_w4a8_per_chn_gemm.default(
        in_feats, kernel, wscales, ascales, w_szs, a_ssums, out_feats
    )
    return out_feats


def qserve_w4a8_per_group_gemm(
    in_feats: torch.Tensor,
    kernel: torch.Tensor,
    zeros: torch.Tensor,
    scales_i8: torch.Tensor,
    wscales: torch.Tensor,
    ascales: torch.Tensor,
    out_feats: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    if out_feats is None:
        # NOTE(HandH1998): qserve_w4a8_per_group_gemm only supports out dtype=torch.float16 now
        out_feats = torch.empty(
            (in_feats.shape[0], kernel.shape[0]),
            device=in_feats.device,
            dtype=torch.float16,
        )
    torch.ops.sgl_kernel.qserve_w4a8_per_group_gemm.default(
        in_feats, kernel, zeros, scales_i8, wscales, ascales, out_feats
    )
    return out_feats
264
265


266
267
268
def dsv3_router_gemm(
    hidden_states: torch.Tensor,
    router_weights: torch.Tensor,
269
    out_dtype: torch.dtype = torch.bfloat16,
270
271
272
273
274
) -> torch.Tensor:
    output = torch.empty(
        hidden_states.shape[0],
        router_weights.shape[0],
        device=hidden_states.device,
275
        dtype=out_dtype,
276
277
278
279
280
281
282
283
284
    )
    torch.ops.sgl_kernel.dsv3_router_gemm(
        output,
        hidden_states,
        router_weights,
    )
    return output


285
286
287
288
289
290
291
292
293
294
def shuffle_rows(input_tensor, dst2src_map, output_tensor_shape):
    output_tensor = torch.empty(
        output_tensor_shape,
        device=input_tensor.device,
        dtype=input_tensor.dtype,
    )
    torch.ops.sgl_kernel.shuffle_rows.default(input_tensor, dst2src_map, output_tensor)
    return output_tensor


295
296
297
def scaled_fp4_grouped_quant(
    input_tensor: torch.Tensor,
    input_global_scale: torch.Tensor,
298
    mask: torch.Tensor,
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
):
    """
    Quantize input tensor to FP4 and return quantized tensor and scale, for
    grouped gemm inputs (e.g., grouped_gemm_nt_masked for flashinfer).
    Args:
        input: The input tensor to be quantized to FP4, with shape (l, m, k)
            l is number of groups, m is number of tokens per group, k is number of features.
        input_global_scale: A scalar scaling factor for the entire tensor, with
            shape (l,).
    Outputs:
        output: The quantized tensor in FP4, with shape (m, k // 2, l) but the physical
            layout is (l, m, k // 2). `// 2` is because two fp4 values are packed into
            an uint8.
        output_scales: The blockscale tensor in FP8-E4M3, with shape (32, 4, rm, 4, rk, l)
            but the physical layout is (l, rm, rk, 32, 4, 4).
    Note:
        For the shape of output_scales, `32 * 4 * rm` is a padded m to nearest multiple of 128.
        `4 * rk` is a padded `k // 16` to nearest multiple of 4. These layout constants are
        required by the NVIDIA Blackwell MMA operations.
    """
    device = input_tensor.device
    l, m, k = input_tensor.shape
    sf_vec_size = 16
    assert k % sf_vec_size == 0, f"k must be multiple of 16, but got {k}."

    scale_k = k // sf_vec_size
    padded_k = (scale_k + (4 - 1)) // 4 * 4
    padded_k_int32 = padded_k // 4
    padded_m = (m + (128 - 1)) // 128 * 128
    output = torch.empty(l, m, k // 2, device=device, dtype=torch.uint8)
    output_scales = torch.empty(
        l, padded_m, padded_k_int32, device=device, dtype=torch.int32
    )

333
    torch.ops.sgl_kernel.silu_and_mul_scaled_fp4_experts_quant.default(
334
335
336
337
        output.view(l * m, k // 2),
        output_scales.view(l * padded_m, padded_k_int32),
        input_tensor.view(l * m, k),
        input_global_scale,
338
339
        mask,
        use_silu_and_mul=False,
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    )
    # The physical layout of the output is (l, m, k // 2), but we want to return a
    # logical layout (m, k // 2, l) required by the flashinfer masked group gemm.
    output = output.permute(1, 2, 0)
    # The physical layout of the output scales is already swizzled as (l, rm, rk, 32, 4, 4), a
    # requirement for the flashinfer masked group gemm, where rm=m/128 and rk=k/4. The logic
    # layout is (32, 4, rm, 4, rk, l).
    output_scales = output_scales.view(torch.float8_e4m3fn).view(
        l, padded_m // 128, padded_k // 4, 32, 4, 4
    )
    output_scales = output_scales.permute(3, 4, 1, 5, 2, 0)
    return output, output_scales


def silu_and_mul_scaled_fp4_grouped_quant(
    input_tensor: torch.Tensor,
    input_global_scale: torch.Tensor,
    mask: torch.Tensor,
):
    """
    Quantize input tensor to FP4 and return quantized tensor and scale, for
    grouped gemm inputs (e.g., grouped_gemm_nt_masked for flashinfer).
    Args:
        input: The input tensor to be quantized to FP4, with shape (l, m, k * 2)
            l is number of groups, m is number of tokens per group, k is number of features.
        input_global_scale: A scalar scaling factor for the entire tensor, with
            shape (l,).
        mask: The mask tensor, with shape (l,)
    Outputs:
        output: The quantized tensor in FP4, with shape (m, k // 2, l) but the physical
            layout is (l, m, k // 2). `// 2` is because two fp4 values are packed into
            an uint8.
        output_scales: The blockscale tensor in FP8-E4M3, with shape (32, 4, rm, 4, rk, l)
            but the physical layout is (l, rm, rk, 32, 4, 4).
    Note:
        For the shape of output_scales, `32 * 4 * rm` is a padded m to nearest multiple of 128.
        `4 * rk` is a padded `k // 16` to nearest multiple of 4. These layout constants are
        required by the NVIDIA Blackwell MMA operations.
    """
    device = input_tensor.device
    l, m, k_by_2 = input_tensor.shape
    k = k_by_2 // 2
    sf_vec_size = 16
    assert k % sf_vec_size == 0, f"k must be multiple of 16, but got {k}."

    scale_k = k // sf_vec_size
    padded_k = (scale_k + (4 - 1)) // 4 * 4
    padded_k_int32 = padded_k // 4
    padded_m = (m + (128 - 1)) // 128 * 128
    output = torch.empty(l, m, k // 2, device=device, dtype=torch.uint8)
    output_scales = torch.empty(
        l, padded_m, padded_k_int32, device=device, dtype=torch.int32
    )

    torch.ops.sgl_kernel.silu_and_mul_scaled_fp4_experts_quant.default(
        output.view(l * m, k // 2),
        output_scales.view(l * padded_m, padded_k_int32),
        input_tensor.view(l * m, k_by_2),
        input_global_scale,
        mask,
400
        use_silu_and_mul=True,
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    )
    # The physical layout of the output is (l, m, k // 2), but we want to return a
    # logical layout (m, k // 2, l) required by the flashinfer masked group gemm.
    output = output.permute(1, 2, 0)
    # The physical layout of the output scales is already swizzled as (l, rm, rk, 32, 4, 4), a
    # requirement for the flashinfer masked group gemm, where rm=m/128 and rk=k/4. The logic
    # layout is (32, 4, rm, 4, rk, l).
    output_scales = output_scales.view(torch.float8_e4m3fn).view(
        l, padded_m // 128, padded_k // 4, 32, 4, 4
    )
    output_scales = output_scales.permute(3, 4, 1, 5, 2, 0)
    return output, output_scales


415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
def scaled_fp4_experts_quant(
    input_tensor: torch.Tensor,
    input_global_scale: torch.Tensor,
    expert_offsets: torch.Tensor,
    blockscale_offsets: torch.Tensor,
    topk: int,
    expert_map: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
    """
    Quantize input tensor to FP4 and return quantized tensor and scale, for
    packed MoE Inputs.
    Args:
        input: The input tensor to be quantized to FP4
        expert_map: The expert map tensor
        input_global_scale: A scalar scaling factor for the entire tensor.
        expert_offsets: The expert offsets tensor
        blockscale_offsets: The blockscale offsets tensor
    Outputs:
        output: The quantized tensor in FP4
        output_scales: The blockscale tensor in FP8-E4M3
    """
    assert (
        input_tensor.ndim == 2
    ), f"input.ndim needs to be == 2, but got {input_tensor.ndim}."
    if expert_map is not None:
        (m, k) = input_tensor.shape
        output_tensor_shape = (m * topk, k)
        input_tensor = shuffle_rows(input_tensor, expert_map, output_tensor_shape)
    m_numtopk, k = input_tensor.shape
    # Control the maximum number of tokens per expert supported by the
    # NVFP4 MoE Expert Quantization. This is used to prevent the kernel
    # from running out of memory. This value can also be increased to support
    # larger models.
    import os

    MAX_TOKENS_PER_EXPERT = os.environ.get("MODELOPT_MAX_TOKENS_PER_EXPERT", 65536)
    assert m_numtopk <= MAX_TOKENS_PER_EXPERT * topk, (
        f"m_numtopk must be less than MAX_TOKENS_PER_EXPERT("
        f"{MAX_TOKENS_PER_EXPERT})"
        f" for cutlass_moe_fp4, observed m_numtopk = {m_numtopk}. Use"
        f" MODELOPT_MAX_TOKENS_PER_EXPERT to set this value."
    )
    scales_k = k // 16
    padded_k = (scales_k + (4 - 1)) // 4

    # output is uint8 and packed fp4 values
    output = torch.empty(
        m_numtopk, k // 2, device=input_tensor.device, dtype=torch.uint8
    )
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    # padded part should be zeroed out
    if padded_k > scales_k:
        output_scales = torch.zeros(
            MAX_TOKENS_PER_EXPERT * topk,
            padded_k,
            dtype=torch.int32,
            device=input_tensor.device,
        )
    else:
        output_scales = torch.empty(
            MAX_TOKENS_PER_EXPERT * topk,
            padded_k,
            dtype=torch.int32,
            device=input_tensor.device,
        )
479
480
481
482
483
484
485
486
487
488
    torch.ops.sgl_kernel.scaled_fp4_experts_quant.default(
        output,
        output_scales,
        input_tensor,
        input_global_scale,
        expert_offsets,
        blockscale_offsets,
    )
    output_scales = output_scales.view(torch.float8_e4m3fn)
    return output, output_scales
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547


# GPTQ kernels
def gptq_marlin_gemm(
    a: torch.Tensor,
    c: Optional[torch.Tensor],
    b_q_weight: torch.Tensor,
    b_scales: torch.Tensor,
    global_scale: Optional[torch.Tensor],
    b_zeros: Optional[torch.Tensor],
    g_idx: Optional[torch.Tensor],
    perm: Optional[torch.Tensor],
    workspace: torch.Tensor,
    b_q_type: ScalarType,
    size_m: int,
    size_n: int,
    size_k: int,
    is_k_full: bool = True,
    use_atomic_add: bool = False,
    use_fp32_reduce: bool = False,
    is_zp_float: bool = False,
) -> torch.Tensor:
    return torch.ops.sgl_kernel.gptq_marlin_gemm(
        a,
        c,
        b_q_weight,
        b_scales,
        global_scale,
        b_zeros,
        g_idx,
        perm,
        workspace,
        b_q_type.id,
        size_m,
        size_n,
        size_k,
        is_k_full,
        use_atomic_add,
        use_fp32_reduce,
        is_zp_float,
    )


def gptq_gemm(
    a: torch.Tensor,
    b_q_weight: torch.Tensor,
    b_gptq_qzeros: torch.Tensor,
    b_gptq_scales: torch.Tensor,
    b_g_idx: torch.Tensor,
    use_shuffle: bool,
    bit: int,
) -> torch.Tensor:
    return torch.ops.sgl_kernel.gptq_gemm(
        a, b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx, use_shuffle, bit
    )


def gptq_shuffle(q_weight: torch.Tensor, q_perm: torch.Tensor, bit: int) -> None:
    torch.torch.ops.sgl_kernel.gptq_shuffle(q_weight, q_perm, bit)