gemm.py 6.02 KB
Newer Older
Trevor Morris's avatar
Trevor Morris committed
1
from typing import List, Optional, Tuple
2
3

import torch
4
from sgl_kernel.utils import _get_cache_buf, get_cuda_stream
5
6


7
8
9
def awq_dequantize(
    qweight: torch.Tensor, scales: torch.Tensor, qzeros: torch.Tensor
) -> torch.ByteTensor:
Yineng Zhang's avatar
Yineng Zhang committed
10
    return torch.ops.sgl_kernel.awq_dequantize(qweight, scales, qzeros)
11
12


13
def int8_scaled_mm(mat_a, mat_b, scales_a, scales_b, out_dtype, bias=None):
14
    return torch.ops.sgl_kernel.int8_scaled_mm(
15
16
17
18
19
20
21
22
23
24
        mat_a,
        mat_b,
        scales_a,
        scales_b,
        out_dtype,
        bias,
    )


def fp8_blockwise_scaled_mm(mat_a, mat_b, scales_a, scales_b, out_dtype):
25
    return torch.ops.sgl_kernel.fp8_blockwise_scaled_mm(
26
27
28
29
30
31
32
33
34
        mat_a,
        mat_b,
        scales_a,
        scales_b,
        out_dtype,
    )


def fp8_scaled_mm(mat_a, mat_b, scales_a, scales_b, out_dtype, bias=None):
35
    return torch.ops.sgl_kernel.fp8_scaled_mm(
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
        mat_a,
        mat_b,
        scales_a,
        scales_b,
        out_dtype,
        bias,
    )


def _bmm_fp8_internal(
    workspace_buffer: torch.Tensor,
    A: torch.Tensor,
    B: torch.Tensor,
    D: torch.Tensor,
    A_scale: torch.Tensor,
    B_scale: torch.Tensor,
) -> None:
    cublas_handle = torch.cuda.current_blas_handle()
54
    torch.ops.sgl_kernel.bmm_fp8(
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        A,
        B,
        D,
        A_scale,
        B_scale,
        workspace_buffer,
        cublas_handle,
        get_cuda_stream(),
    )


def bmm_fp8(
    A: torch.Tensor,
    B: torch.Tensor,
    A_scale: torch.Tensor,
    B_scale: torch.Tensor,
    dtype: torch.dtype,
    out: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    if out is None:
        out = torch.empty(
            (A.shape[0], A.shape[1], B.shape[2]),
            device=A.device,
            dtype=dtype,
        )
    workspace_buffer = _get_cache_buf("bmm_fp8_workspace", 32 * 1024 * 1024, A.device)
    _bmm_fp8_internal(workspace_buffer, A, B, out, A_scale, B_scale)
    return out


def sgl_per_token_group_quant_fp8(
    input: torch.Tensor,
    output_q: torch.Tensor,
    output_s: torch.Tensor,
    group_size: int,
    eps: float,
    fp8_min: float,
    fp8_max: float,
) -> None:
94
    torch.ops.sgl_kernel.sgl_per_token_group_quant_fp8(
95
96
97
98
        input, output_q, output_s, group_size, eps, fp8_min, fp8_max
    )


99
100
101
102
103
104
105
106
107
108
109
110
111
112
def sgl_per_token_group_quant_int8(
    input: torch.Tensor,
    output_q: torch.Tensor,
    output_s: torch.Tensor,
    group_size: int,
    eps: float,
    int8_min: float,
    int8_max: float,
) -> None:
    torch.ops.sgl_kernel.sgl_per_token_group_quant_int8(
        input, output_q, output_s, group_size, eps, int8_min, int8_max
    )


113
114
115
116
117
118
def sgl_per_tensor_quant_fp8(
    input: torch.Tensor,
    output_q: torch.Tensor,
    output_s: torch.Tensor,
    is_static: bool,
) -> None:
119
    torch.ops.sgl_kernel.sgl_per_tensor_quant_fp8(input, output_q, output_s, is_static)
120
121


122
123
124
125
126
127
128
129
130
131
def cublas_grouped_gemm(
    inputs: List[torch.Tensor],
    weights: List[torch.Tensor],
    outputs: List[torch.Tensor],
    out_dtype: torch.dtype,
) -> None:
    assert (
        len(inputs) > 0 and len(weights) > 0 and len(outputs) > 0
    ), "Inputs/weights/outputs should not be empty!"
    cublas_handle = torch.cuda.current_blas_handle()
132
    torch.ops.sgl_kernel.cublas_grouped_gemm(
133
134
135
136
137
138
139
        inputs,
        weights,
        outputs,
        out_dtype,
        cublas_handle,
        get_cuda_stream(),
    )
140
141
142
143
144
145
146


def sgl_per_token_quant_fp8(
    input: torch.Tensor,
    output_q: torch.Tensor,
    output_s: torch.Tensor,
) -> None:
147
    torch.ops.sgl_kernel.sgl_per_token_quant_fp8(input, output_q, output_s)
Trevor Morris's avatar
Trevor Morris committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217


def cutlass_scaled_fp4_mm(
    a: torch.Tensor,
    b: torch.Tensor,
    block_scale_a: torch.Tensor,
    block_scale_b: torch.Tensor,
    alpha: torch.Tensor,
    out_dtype: torch.dtype,
) -> torch.Tensor:
    assert a.ndim == 2 and b.ndim == 2
    m, n = a.shape[0], b.shape[0]
    out = torch.empty((m, n), dtype=out_dtype, device=a.device)
    torch.ops.sgl_kernels.cutlass_scaled_fp4_mm(
        out, a, b, block_scale_a, block_scale_b, alpha
    )
    return out


def scaled_fp4_quant(
    input: torch.Tensor, input_global_scale: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Quantize input tensor to FP4 and return quantized tensor and scale.

    This function quantizes the last dimension of the given tensor `input`. For
    every 16 consecutive elements, a single dynamically computed scaling factor
    is shared. This scaling factor is quantized using the `input_global_scale`
    and is stored in a swizzled layout (see
    https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x).

    Args:
        input: The input tensor to be quantized to FP4
        input_global_scale: A scalar scaling factor for the entire tensor.

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: The output tensor in FP4 but every
            two values are packed into a uint8 and float8_e4m3 scaling factors
            in a sizzled layout.
    """
    assert input.ndim >= 1, f"input.ndim needs to be >= 1, but got {input.ndim}."
    other_dims = 1 if input.ndim == 1 else -1
    input = input.reshape(other_dims, input.shape[-1])
    m, n = input.shape
    block_size = 16
    device = input.device

    assert n % block_size == 0, f"last dim has to be multiple of 16, but got {n}."
    assert input.dtype in (
        torch.float16,
        torch.bfloat16,
    ), f"input.dtype needs to be fp16 or bf16 but got {input.dtype}."

    # Two fp4 values will be packed into an uint8.
    output = torch.empty((m, n // 2), device=device, dtype=torch.uint8)

    # We use the rounded values to store the swizzled values. Then, the scaling
    # factors in float8_e4m3fn are packed into an int32 for every 4 values.
    rounded_m = ((m + 128 - 1) // 128) * 128
    scale_n = n // block_size
    rounded_n = ((scale_n + 4 - 1) // 4) * 4
    output_scale = torch.empty(
        (rounded_m, rounded_n // 4), device=device, dtype=torch.int32
    )

    torch.ops.sgl_kernels.scaled_fp4_quant(
        output, input, output_scale, input_global_scale
    )
    output_scale = output_scale.view(torch.float8_e4m3fn)
    return output, output_scale