deepseek_v2.py 47.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
18

19
import os
Liangsheng Yin's avatar
Liangsheng Yin committed
20
21
22
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
Ke Bao's avatar
Ke Bao committed
23
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
24
25
from torch import nn
from transformers import PretrainedConfig
26
27

from sglang.srt.distributed import (
Liangsheng Yin's avatar
Liangsheng Yin committed
28
29
30
    get_tensor_model_parallel_world_size,
    tensor_model_parallel_all_reduce,
)
31
from sglang.srt.layers.activation import SiluAndMul
32
33
34
from sglang.srt.layers.attention.triton_ops.rocm_mla_decode_rope import (
    decode_attention_fwd_grouped_rope,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
35
from sglang.srt.layers.dp_attention import (
36
    dp_gather_partial,
Lianmin Zheng's avatar
Lianmin Zheng committed
37
38
39
40
41
    dp_scatter,
    get_attention_dp_size,
    get_attention_tp_rank,
    get_attention_tp_size,
)
42
from sglang.srt.layers.layernorm import RMSNorm
43
44
45
46
47
48
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
49
from sglang.srt.layers.logits_processor import LogitsProcessor
Ke Bao's avatar
Ke Bao committed
50
51
from sglang.srt.layers.moe.ep_moe.layer import EPMoE
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
52
from sglang.srt.layers.quantization.base_config import QuantizationConfig
HandH1998's avatar
HandH1998 committed
53
54
55
from sglang.srt.layers.quantization.fp8_utils import (
    block_quant_to_tensor_quant,
    input_to_float8,
56
    normalize_e4m3fn_to_e4m3fnuz,
HandH1998's avatar
HandH1998 committed
57
)
58
59
60
from sglang.srt.layers.quantization.int8_utils import (
    block_dequant as int8_block_dequant,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
61
from sglang.srt.layers.radix_attention import RadixAttention
62
from sglang.srt.layers.rotary_embedding import get_rope, get_rope_wrapper
63
64
65
66
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
67
from sglang.srt.managers.schedule_batch import global_server_args_dict
68
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
69
from sglang.srt.model_loader.weight_utils import default_weight_loader
Yineng Zhang's avatar
Yineng Zhang committed
70
from sglang.srt.utils import add_prefix, is_cuda, is_cuda_available, is_hip
71

72
_is_hip = is_hip()
Yineng Zhang's avatar
Yineng Zhang committed
73
_is_cuda = is_cuda()
74

Yineng Zhang's avatar
Yineng Zhang committed
75
76
if _is_cuda:
    from sgl_kernel import awq_dequantize, bmm_fp8
Yineng Zhang's avatar
Yineng Zhang committed
77
78
else:
    from vllm import _custom_ops as ops
Liangsheng Yin's avatar
Liangsheng Yin committed
79
80
81
82
83
84
85
86
87
88


class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
89
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
90
91
92
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
93
94
95
96
97
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("gate_up_proj", prefix),
Liangsheng Yin's avatar
Liangsheng Yin committed
98
99
100
101
102
103
104
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
105
            prefix=add_prefix("down_proj", prefix),
Liangsheng Yin's avatar
Liangsheng Yin committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


Ke Bao's avatar
Ke Bao committed
121
class MoEGate(nn.Module):
122
123
124
125
126
    def __init__(
        self,
        config,
        prefix: str = "",
    ):
Ke Bao's avatar
Ke Bao committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        super().__init__()
        self.weight = nn.Parameter(
            torch.empty((config.n_routed_experts, config.hidden_size))
        )
        if config.topk_method == "noaux_tc":
            self.e_score_correction_bias = nn.Parameter(
                torch.empty((config.n_routed_experts))
            )
        else:
            self.e_score_correction_bias = None

    def forward(self, hidden_states):
        logits = F.linear(hidden_states, self.weight, None)
        return logits


Liangsheng Yin's avatar
Liangsheng Yin committed
143
144
145
146
147
148
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
149
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
        self.routed_scaling_factor = config.routed_scaling_factor
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

168
        self.gate = MoEGate(config=config, prefix=add_prefix("gate", prefix))
Ke Bao's avatar
Ke Bao committed
169

xiaobochen's avatar
xiaobochen committed
170
171
        MoEImpl = EPMoE if global_server_args_dict["enable_ep_moe"] else FusedMoE
        self.experts = MoEImpl(
Liangsheng Yin's avatar
Liangsheng Yin committed
172
173
174
175
176
177
178
179
180
            num_experts=config.n_routed_experts,
            top_k=config.num_experts_per_tok,
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
            topk_group=config.topk_group,
Ke Bao's avatar
Ke Bao committed
181
            correction_bias=self.gate.e_score_correction_bias,
182
            prefix=add_prefix("experts", prefix),
Liangsheng Yin's avatar
Liangsheng Yin committed
183
184
185
186
187
188
189
190
191
192
        )

        if config.n_shared_experts is not None:
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
193
                prefix=add_prefix("shared_experts", prefix),
Liangsheng Yin's avatar
Liangsheng Yin committed
194
195
196
197
198
199
200
201
            )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        num_tokens, hidden_dim = hidden_states.shape
        hidden_states = hidden_states.view(-1, hidden_dim)
        if self.n_shared_experts is not None:
            shared_output = self.shared_experts(hidden_states)
        # router_logits: (num_tokens, n_experts)
Ke Bao's avatar
Ke Bao committed
202
        router_logits = self.gate(hidden_states)
Liangsheng Yin's avatar
Liangsheng Yin committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        final_hidden_states = (
            self.experts(hidden_states=hidden_states, router_logits=router_logits)
            * self.routed_scaling_factor
        )
        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)

        return final_hidden_states.view(num_tokens, hidden_dim)


def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


class DeepseekV2Attention(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
        layer_id=None,
Lianmin Zheng's avatar
Lianmin Zheng committed
240
        reduce_results: bool = True,
241
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
242
243
244
245
246
247
248
249
250
251
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
Lianmin Zheng's avatar
Lianmin Zheng committed
252
253
254
255
256

        self.dp_size = get_attention_dp_size()
        attn_tp_rank = get_attention_tp_rank()
        attn_tp_size = get_attention_tp_size()

Liangsheng Yin's avatar
Liangsheng Yin committed
257
        self.num_heads = num_heads
Lianmin Zheng's avatar
Lianmin Zheng committed
258
259
        assert num_heads % attn_tp_size == 0
        self.num_local_heads = num_heads // attn_tp_size
Liangsheng Yin's avatar
Liangsheng Yin committed
260
261
262
263
264
265
266
267
268
269
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        if self.q_lora_rank is not None:
            self.q_a_proj = ReplicatedLinear(
                self.hidden_size,
                self.q_lora_rank,
                bias=False,
                quant_config=quant_config,
270
                prefix=add_prefix("q_a_proj", prefix),
Liangsheng Yin's avatar
Liangsheng Yin committed
271
272
273
274
275
276
277
            )
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
                bias=False,
                quant_config=quant_config,
278
                prefix=add_prefix("q_b_proj", prefix),
Liangsheng Yin's avatar
Liangsheng Yin committed
279
280
281
282
283
284
285
            )
        else:
            self.q_proj = ColumnParallelLinear(
                self.hidden_size,
                self.num_heads * self.qk_head_dim,
                bias=False,
                quant_config=quant_config,
286
                prefix=add_prefix("q_proj", prefix),
Lianmin Zheng's avatar
Lianmin Zheng committed
287
288
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
289
290
291
292
293
294
295
            )

        self.kv_a_proj_with_mqa = ReplicatedLinear(
            self.hidden_size,
            self.kv_lora_rank + self.qk_rope_head_dim,
            bias=False,
            quant_config=quant_config,
296
            prefix=add_prefix("kv_a_proj_with_mqa", prefix),
Liangsheng Yin's avatar
Liangsheng Yin committed
297
298
299
300
301
302
303
        )
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
304
            prefix=add_prefix("kv_b_proj", prefix),
Liangsheng Yin's avatar
Liangsheng Yin committed
305
306
307
308
309
310
311
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
312
            prefix=add_prefix("o_proj", prefix),
Lianmin Zheng's avatar
Lianmin Zheng committed
313
314
315
            reduce_results=reduce_results,
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
316
        )
317
        rope_scaling["rope_type"] = "deepseek_yarn"
318
        self.rotary_emb = get_rope_wrapper(
Liangsheng Yin's avatar
Liangsheng Yin committed
319
320
321
322
323
324
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
325
            device=global_server_args_dict["device"],
Liangsheng Yin's avatar
Liangsheng Yin committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale

        # TODO, support head_size 192
        self.attn = RadixAttention(
            self.num_local_heads,
            256,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
341
            prefix=add_prefix("attn", prefix),
Liangsheng Yin's avatar
Liangsheng Yin committed
342
343
344
345
346
347
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
348
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
349
    ) -> torch.Tensor:
Lianmin Zheng's avatar
Lianmin Zheng committed
350
351
352
353
354
355
        if hidden_states.shape[0] == 0:
            assert (
                not self.o_proj.reduce_results
            ), "short-circuiting allreduce will lead to hangs"
            return hidden_states

Liangsheng Yin's avatar
Liangsheng Yin committed
356
357
358
359
360
361
362
363
        if self.q_lora_rank is not None:
            q = self.q_a_proj(hidden_states)[0]
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
364
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
Liangsheng Yin's avatar
Liangsheng Yin committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe
        q = torch.nn.functional.pad(q, [0, 256 - self.qk_head_dim], value=0).view(
            -1, self.num_local_heads * 256
        )
        k = torch.nn.functional.pad(k, [0, 256 - self.qk_head_dim], value=0).view(
            -1, self.num_local_heads * 256
        )
        v = torch.nn.functional.pad(v, [0, 256 - self.v_head_dim], value=0).view(
            -1, self.num_local_heads * 256
        )
387
        attn_output = self.attn(q, k, v, forward_batch)
Liangsheng Yin's avatar
Liangsheng Yin committed
388
389
390
391
392
393
394
        attn_output = attn_output.view(-1, self.num_local_heads, 256)[
            ..., : self.v_head_dim
        ].reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output


395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
411
412
        reduce_results: bool = True,
        layer_id: int = None,
413
        prefix: str = "",
414
415
416
417
418
419
420
421
422
423
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
Lianmin Zheng's avatar
Lianmin Zheng committed
424
425
426
427
        self.dp_size = get_attention_dp_size()
        attn_tp_rank = get_attention_tp_rank()
        attn_tp_size = get_attention_tp_size()

428
        self.num_heads = num_heads
Lianmin Zheng's avatar
Lianmin Zheng committed
429
430
        assert num_heads % attn_tp_size == 0
        self.num_local_heads = num_heads // attn_tp_size
431
432
433
434
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

Lianmin Zheng's avatar
Lianmin Zheng committed
435
436
437
        # For tensor parallel attention
        if self.q_lora_rank is not None:
            self.q_a_proj = ReplicatedLinear(
Ke Bao's avatar
Ke Bao committed
438
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
439
                self.q_lora_rank,
440
441
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
442
                prefix=add_prefix("q_a_proj", prefix),
443
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
444
445
446
447
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
Ke Bao's avatar
Ke Bao committed
448
449
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
450
451
452
                prefix=add_prefix("q_b_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
Ke Bao's avatar
Ke Bao committed
453
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
454
455
        else:
            self.q_proj = ColumnParallelLinear(
456
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
457
                self.num_heads * self.qk_head_dim,
458
459
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
460
461
462
                prefix=add_prefix("q_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
463
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("kv_b_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=add_prefix("o_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
484
485
486
487
488
489

        self.kv_a_proj_with_mqa = ReplicatedLinear(
            self.hidden_size,
            self.kv_lora_rank + self.qk_rope_head_dim,
            bias=False,
            quant_config=quant_config,
490
            prefix=add_prefix("kv_a_proj_with_mqa", prefix),
491
492
        )
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
Ke Bao's avatar
Ke Bao committed
493
494
495
496

        if rope_scaling:
            rope_scaling["rope_type"] = "deepseek_yarn"

497
        self.rotary_emb = get_rope(
498
499
500
501
502
503
504
505
506
507
508
509
510
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale
Ke Bao's avatar
Ke Bao committed
511
512
        else:
            self.rotary_emb.forward = self.rotary_emb.forward_native
513

514
        self.attn_mqa = RadixAttention(
515
516
517
518
519
520
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
521
            prefix=add_prefix("attn_mqa", prefix),
522
523
        )

524
525
526
527
528
529
530
        self.attn_mha = RadixAttention(
            self.num_local_heads,
            self.qk_nope_head_dim + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
            v_head_dim=self.v_head_dim,
531
            prefix=add_prefix("attn_mha", prefix),
532
533
        )

Ke Bao's avatar
Ke Bao committed
534
535
        self.w_kc = None
        self.w_vc = None
536
        self.w_scale = None
537

Lianmin Zheng's avatar
Lianmin Zheng committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
        self.enable_flashinfer_mla = global_server_args_dict["enable_flashinfer_mla"]
        self.flashinfer_mla_disable_ragged = global_server_args_dict[
            "flashinfer_mla_disable_ragged"
        ]
        self.rocm_fused_decode_mla = os.getenv("SGLANG_ROCM_FUSED_DECODE_MLA") == "1"

    def no_absorb(self, forward_batch: ForwardBatch) -> bool:
        if self.enable_flashinfer_mla:
            # Flashinfer MLA: Do not absorb when enabling ragged prefill
            return (
                not self.flashinfer_mla_disable_ragged
                and forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
                and forward_batch.extend_prefix_lens.sum() == 0
            )
        else:
            # Triton: Use normal computation for prefill and use weight absorption for extend/decode
            return (
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
                and forward_batch.extend_prefix_lens.sum() == 0
            )

563
564
565
566
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
567
        forward_batch: ForwardBatch,
568
    ) -> torch.Tensor:
Lianmin Zheng's avatar
Lianmin Zheng committed
569
570
571
572
573
        if hidden_states.shape[0] == 0:
            assert (
                not self.o_proj.reduce_results
            ), "short-circuiting allreduce will lead to hangs"
            return hidden_states
574

Lianmin Zheng's avatar
Lianmin Zheng committed
575
        if self.no_absorb(forward_batch):
576
            return self.forward_normal(positions, hidden_states, forward_batch)
577
        else:
578
            if _is_hip:
579
                if (
Lianmin Zheng's avatar
Lianmin Zheng committed
580
                    self.rocm_fused_decode_mla
581
582
583
584
585
586
587
588
589
                    and forward_batch.forward_mode.is_decode()
                ):
                    return self.forward_absorb_fused_mla_rope(
                        positions, hidden_states, forward_batch
                    )
                else:
                    return self.forward_absorb(positions, hidden_states, forward_batch)
            else:
                return self.forward_absorb(positions, hidden_states, forward_batch)
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

    def forward_normal(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        if self.q_lora_rank is not None:
            q = self.q_a_proj(hidden_states)[0]
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

    def forward_absorb(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
638
639
640
641
642
643
644
645
646
647
648
649
650
651
    ) -> torch.Tensor:
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
            q = self.q_a_proj(hidden_states)[0]
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
652

653
        if self.w_kc.dtype == torch.float8_e4m3fnuz:
654
655
656
657
658
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
659
        elif self.w_kc.dtype == torch.float8_e4m3fn:
660
661
662
663
664
665
666
667
668
            q_nope_val, q_nope_scale = input_to_float8(
                q_nope.transpose(0, 1), torch.float8_e4m3fn
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
669

Ke Bao's avatar
Ke Bao committed
670
671
672
673
        latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
674
        k_input[..., : self.kv_lora_rank] = v_input
Ke Bao's avatar
Ke Bao committed
675
        k_pe = k_input[..., self.kv_lora_rank :]
676
677
678
679
680

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q_input[..., self.kv_lora_rank :] = q_pe
        k_input[..., self.kv_lora_rank :] = k_pe

681
        attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
682
683
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

684
        if self.w_vc.dtype == torch.float8_e4m3fnuz:
685
686
687
688
689
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
690
        elif self.w_vc.dtype == torch.float8_e4m3fn:
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
            attn_output_val, attn_output_scale = input_to_float8(
                attn_output.transpose(0, 1), torch.float8_e4m3fn
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
        output, _ = self.o_proj(attn_output)

        return output

    def forward_absorb_fused_mla_rope(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        enable_rope_fusion = (
            os.getenv("SGLANG_FUSED_MLA_ENABLE_ROPE_FUSION", "1") == "1"
        )
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
            q = self.q_a_proj(hidden_states)[0]
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

        if self.w_kc.dtype == torch.float8_e4m3fnuz:
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_kc.dtype == torch.float8_e4m3fn:
            q_nope_val, q_nope_scale = input_to_float8(
                q_nope.transpose(0, 1), torch.float8_e4m3fn
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)

        latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
        k_input[..., : self.kv_lora_rank] = v_input

        if not enable_rope_fusion:
            k_pe = k_input[..., self.kv_lora_rank :]
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
            q_input[..., self.kv_lora_rank :] = q_pe
            k_input[..., self.kv_lora_rank :] = k_pe
            k_pe_output = None
        else:
            k_pe_output = torch.empty_like(k_input[..., self.kv_lora_rank :])

        q_input[..., self.kv_lora_rank :] = q_pe

        # attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        # Use Fused ROPE with use_rope=OFF.
        attn_output = torch.empty(
            (q_len, self.num_local_heads, self.kv_lora_rank),
            dtype=q.dtype,
            device=q.device,
        )
        attn_logits, _, kv_indptr, kv_indices, _, _, _ = (
            forward_batch.attn_backend.forward_metadata
        )
        cos_sin_cache = self.rotary_emb.cos_sin_cache
        num_kv_split = forward_batch.attn_backend.num_kv_splits
        sm_scale = self.attn_mqa.scaling
        if attn_logits is None:
            attn_logits = torch.empty(
                (
                    forward_batch.batch_size,
                    self.num_local_heads,
                    num_kv_split,
                    self.kv_lora_rank + 1,
                ),
                dtype=torch.float32,
                device=q.device,
            )

        # save current latent cache.
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mqa, forward_batch.out_cache_loc, k_input, None
        )
        key_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
            self.attn_mqa.layer_id
        )
        val_cache_buf = key_cache_buf[..., : self.kv_lora_rank]

        decode_attention_fwd_grouped_rope(
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            self.kv_lora_rank,
            self.rotary_emb.rotary_dim,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            logit_cap=self.attn_mqa.logit_cap,
            use_rope=enable_rope_fusion,
            is_neox_style=self.rotary_emb.is_neox_style,
        )

        if enable_rope_fusion:
            k_input[..., self.kv_lora_rank :] = k_pe_output
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mqa, forward_batch.out_cache_loc, k_input, None
            )

        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

827
828
829
830
831
832
833
        if self.w_vc.dtype == torch.float8_e4m3fnuz:
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_vc.dtype == torch.float8_e4m3fn:
834
835
836
837
838
839
840
841
842
843
844
845
846
            attn_output_val, attn_output_scale = input_to_float8(
                attn_output.transpose(0, 1), torch.float8_e4m3fn
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
847
848
849
850
851
        output, _ = self.o_proj(attn_output)

        return output


Liangsheng Yin's avatar
Liangsheng Yin committed
852
853
854
855
856
857
858
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
859
        is_nextn: bool = False,
860
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
861
862
863
864
865
866
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
Lianmin Zheng's avatar
Lianmin Zheng committed
867
868
869
870
        self.enable_dp_attention = global_server_args_dict["enable_dp_attention"]
        self.layer_id = layer_id
        self.dp_size = get_attention_dp_size()

Ke Bao's avatar
Ke Bao committed
871
        if not global_server_args_dict["disable_mla"]:
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
            self.self_attn = DeepseekV2AttentionMLA(
                config=config,
                hidden_size=self.hidden_size,
                num_heads=config.num_attention_heads,
                qk_nope_head_dim=config.qk_nope_head_dim,
                qk_rope_head_dim=config.qk_rope_head_dim,
                v_head_dim=config.v_head_dim,
                q_lora_rank=(
                    config.q_lora_rank if hasattr(config, "q_lora_rank") else None
                ),
                kv_lora_rank=config.kv_lora_rank,
                rope_theta=rope_theta,
                rope_scaling=rope_scaling,
                max_position_embeddings=max_position_embeddings,
                quant_config=quant_config,
                layer_id=layer_id,
Lianmin Zheng's avatar
Lianmin Zheng committed
888
                reduce_results=False,
889
                prefix=add_prefix("self_attn", prefix),
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
            )
        else:
            self.self_attn = DeepseekV2Attention(
                config=config,
                hidden_size=self.hidden_size,
                num_heads=config.num_attention_heads,
                qk_nope_head_dim=config.qk_nope_head_dim,
                qk_rope_head_dim=config.qk_rope_head_dim,
                v_head_dim=config.v_head_dim,
                q_lora_rank=(
                    config.q_lora_rank if hasattr(config, "q_lora_rank") else None
                ),
                kv_lora_rank=config.kv_lora_rank,
                rope_theta=rope_theta,
                rope_scaling=rope_scaling,
                max_position_embeddings=max_position_embeddings,
                quant_config=quant_config,
                layer_id=layer_id,
Lianmin Zheng's avatar
Lianmin Zheng committed
908
                reduce_results=False,
909
                prefix=add_prefix("self_attn", prefix),
910
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
911

912
        if is_nextn or (
Liangsheng Yin's avatar
Liangsheng Yin committed
913
914
915
916
            config.n_routed_experts is not None
            and layer_id >= config.first_k_dense_replace
            and layer_id % config.moe_layer_freq == 0
        ):
917
918
919
920
921
            self.mlp = DeepseekV2MoE(
                config=config,
                quant_config=quant_config,
                prefix=add_prefix("mlp", prefix),
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
922
923
924
925
926
927
        else:
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
928
                prefix=add_prefix("mlp", prefix),
Liangsheng Yin's avatar
Liangsheng Yin committed
929
930
931
932
933
934
935
936
937
938
            )
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
939
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
940
941
        residual: Optional[torch.Tensor],
    ) -> torch.Tensor:
942
        if hidden_states.shape[0] == 0:
Lianmin Zheng's avatar
Lianmin Zheng committed
943
944
            residual = hidden_states
        else:
945
946
947
948
949
            if residual is None:
                residual = hidden_states
                hidden_states = self.input_layernorm(hidden_states)
            else:
                hidden_states, residual = self.input_layernorm(hidden_states, residual)
Lianmin Zheng's avatar
Lianmin Zheng committed
950

951
952
953
954
955
            # Self Attention
            hidden_states = self.self_attn(
                positions=positions,
                hidden_states=hidden_states,
                forward_batch=forward_batch,
Lianmin Zheng's avatar
Lianmin Zheng committed
956
957
958
959
960
961
            )

        # Gather
        if get_tensor_model_parallel_world_size() > 1:
            # all gather and all reduce
            if self.dp_size != 1:
962
963
                if get_attention_tp_rank() == 0:
                    hidden_states += residual
Lianmin Zheng's avatar
Lianmin Zheng committed
964
965
966
967
                hidden_states, local_hidden_states = (
                    forward_batch.gathered_buffer,
                    hidden_states,
                )
968
969
970
                dp_gather_partial(hidden_states, local_hidden_states, forward_batch)
                dp_scatter(residual, hidden_states, forward_batch)
                hidden_states = self.post_attention_layernorm(hidden_states)
Ke Bao's avatar
Ke Bao committed
971
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
972
                hidden_states = tensor_model_parallel_all_reduce(hidden_states)
973
974
975
976
977
978
979
                hidden_states, residual = self.post_attention_layernorm(
                    hidden_states, residual
                )
        else:
            hidden_states, residual = self.post_attention_layernorm(
                hidden_states, residual
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
980
981

        # Fully Connected
Lianmin Zheng's avatar
Lianmin Zheng committed
982
        hidden_states = self.mlp(hidden_states)
983
984
985
986
987
988
989
990
991
992
993

        # Scatter
        if self.dp_size != 1:
            # important: forward batch.gathered_buffer is used both after scatter and after gather.
            # be careful about this!
            hidden_states, global_hidden_states = (
                forward_batch.gathered_buffer[: forward_batch.input_ids.shape[0]],
                hidden_states,
            )
            dp_scatter(hidden_states, global_hidden_states, forward_batch)

Liangsheng Yin's avatar
Liangsheng Yin committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
        return hidden_states, residual


class DeepseekV2Model(nn.Module):

    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1005
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1006
1007
1008
1009
1010
1011
1012
1013
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
Ke Bao's avatar
Ke Bao committed
1014
            enable_tp=not global_server_args_dict["enable_dp_attention"],
Liangsheng Yin's avatar
Liangsheng Yin committed
1015
1016
1017
1018
1019
1020
1021
        )
        self.layers = nn.ModuleList(
            [
                DeepseekV2DecoderLayer(
                    config,
                    layer_id,
                    quant_config=quant_config,
1022
                    prefix=add_prefix(f"layers.{layer_id}", prefix),
Liangsheng Yin's avatar
Liangsheng Yin committed
1023
1024
1025
1026
1027
1028
                )
                for layer_id in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

Lianmin Zheng's avatar
Lianmin Zheng committed
1029
1030
        self.dp_size = get_attention_dp_size()

Liangsheng Yin's avatar
Liangsheng Yin committed
1031
1032
1033
1034
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1035
        forward_batch: ForwardBatch,
1036
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1037
    ) -> torch.Tensor:
Lianmin Zheng's avatar
Lianmin Zheng committed
1038

1039
1040
1041
1042
1043
        if input_embeds is None:
            hidden_states = self.embed_tokens(input_ids)
        else:
            hidden_states = input_embeds

Liangsheng Yin's avatar
Liangsheng Yin committed
1044
1045
1046
1047
        residual = None
        for i in range(len(self.layers)):
            layer = self.layers[i]
            hidden_states, residual = layer(
1048
                positions, hidden_states, forward_batch, residual
Liangsheng Yin's avatar
Liangsheng Yin committed
1049
            )
Ke Bao's avatar
Ke Bao committed
1050
1051
        if not forward_batch.forward_mode.is_idle():
            hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
1052
1053
1054
1055
1056
1057
1058
1059
1060
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1061
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1062
1063
1064
1065
    ) -> None:
        super().__init__()
        self.config = config
        self.quant_config = quant_config
1066
1067
1068
        self.model = DeepseekV2Model(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1069
1070
1071
1072
1073
1074
1075
1076
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=add_prefix("lm_head", prefix),
        )
        self.logits_processor = LogitsProcessor(config)
        self.dp_size = get_attention_dp_size()
Liangsheng Yin's avatar
Liangsheng Yin committed
1077

1078
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
1079
1080
1081
1082
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1083
        forward_batch: ForwardBatch,
1084
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1085
    ) -> torch.Tensor:
1086
1087

        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
Lianmin Zheng's avatar
Lianmin Zheng committed
1088

1089
1090
1091
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head, forward_batch
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
xiaobochen's avatar
xiaobochen committed
1102
1103
        MoEImpl = EPMoE if global_server_args_dict["enable_ep_moe"] else FusedMoE
        expert_params_mapping = MoEImpl.make_expert_params_mapping(
Liangsheng Yin's avatar
Liangsheng Yin committed
1104
1105
1106
1107
1108
1109
1110
1111
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
            num_experts=self.config.n_routed_experts,
        )

        params_dict = dict(self.named_parameters())
        for name, loaded_weight in weights:
HandH1998's avatar
HandH1998 committed
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
            # TODO(HandH1998): Modify it when nextn is supported.
            if hasattr(self.config, "num_nextn_predict_layers"):
                num_nextn_layers = self.config.num_nextn_predict_layers
                if num_nextn_layers > 0 and name.startswith("model.layers"):
                    name_list = name.split(".")
                    if (
                        len(name_list) >= 3
                        and int(name_list[2]) >= self.config.num_hidden_layers
                    ):
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
            if "rotary_emb.inv_freq" in name:
                continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
1155
                        name,
Liangsheng Yin's avatar
Liangsheng Yin committed
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue

                    param = params_dict[name]
                    weight_loader = getattr(
                        param, "weight_loader", default_weight_loader
                    )
                    weight_loader(param, loaded_weight)

Ke Bao's avatar
Ke Bao committed
1171
        if not global_server_args_dict["disable_mla"]:
Ke Bao's avatar
Ke Bao committed
1172
1173
            for layer_id in range(self.config.num_hidden_layers):
                self_attn = self.model.layers[layer_id].self_attn
Ke Bao's avatar
Ke Bao committed
1174
1175
                if hasattr(self_attn.kv_b_proj, "qweight"):
                    # AWQ compatible
Yineng Zhang's avatar
Yineng Zhang committed
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
                    if _is_cuda:
                        w = awq_dequantize(
                            self_attn.kv_b_proj.qweight,
                            self_attn.kv_b_proj.scales,
                            self_attn.kv_b_proj.qzeros,
                        ).T
                    else:
                        w = ops.awq_dequantize(
                            self_attn.kv_b_proj.qweight,
                            self_attn.kv_b_proj.scales,
                            self_attn.kv_b_proj.qzeros,
                            0,
                            0,
                            0,
                        ).T
Ke Bao's avatar
Ke Bao committed
1191
1192
                else:
                    w = self_attn.kv_b_proj.weight
HandH1998's avatar
HandH1998 committed
1193
1194
                # NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
                # This may affect the accuracy of fp8 model.
1195
1196
1197
                if hasattr(self.quant_config, "weight_block_size") and w.dtype in (
                    torch.float8_e4m3fn,
                    torch.float8_e4m3fnuz,
HandH1998's avatar
HandH1998 committed
1198
1199
1200
1201
                ):
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
1202
                        if _is_hip:
1203
1204
1205
1206
1207
1208
1209
1210
1211
                            weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                                weight=w,
                                weight_scale=self_attn.kv_b_proj.weight_scale_inv,
                                input_scale=None,
                            )
                        else:
                            weight = w
                            weight_scale = self_attn.kv_b_proj.weight_scale_inv

HandH1998's avatar
HandH1998 committed
1212
                        w, scale = block_quant_to_tensor_quant(
1213
                            weight, weight_scale, weight_block_size
HandH1998's avatar
HandH1998 committed
1214
1215
                        )
                        self_attn.w_scale = scale
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
                if w.dtype == torch.int8:
                    if hasattr(self.quant_config, "weight_block_size"):
                        # block-wise int8 need it
                        weight_block_size = self.quant_config.weight_block_size
                        if weight_block_size is not None:
                            assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                            weight = w
                            weight_scale = self_attn.kv_b_proj.weight_scale_inv
                            w = int8_block_dequant(
                                weight, weight_scale, weight_block_size
                            ).to(torch.bfloat16)
                    else:
                        # channel-wise int8 need it
                        w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
                            torch.bfloat16
                        )
Ke Bao's avatar
Ke Bao committed
1232
                w_kc, w_vc = w.unflatten(
Ke Bao's avatar
Ke Bao committed
1233
1234
                    0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
                ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
1235
1236
                self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
                self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
HandH1998's avatar
HandH1998 committed
1237
1238
1239
1240
                if (
                    hasattr(self_attn.kv_b_proj, "weight_scale")
                    and self_attn.w_scale is None
                ):
1241
                    self_attn.w_scale = self_attn.kv_b_proj.weight_scale
1242
                    if _is_hip:
1243
                        self_attn.w_scale *= 2.0
Ke Bao's avatar
Ke Bao committed
1244

1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

Liangsheng Yin's avatar
Liangsheng Yin committed
1256

HandH1998's avatar
HandH1998 committed
1257
1258
1259
1260
1261
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass


EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM]