deepseek_v2.py 37.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
18

Liangsheng Yin's avatar
Liangsheng Yin committed
19
20
21
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
Ke Bao's avatar
Ke Bao committed
22
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
23
24
from torch import nn
from transformers import PretrainedConfig
Ke Bao's avatar
Ke Bao committed
25
from vllm import _custom_ops as ops
26
27

from sglang.srt.distributed import (
Ke Bao's avatar
Ke Bao committed
28
    get_tensor_model_parallel_rank,
Liangsheng Yin's avatar
Liangsheng Yin committed
29
    get_tensor_model_parallel_world_size,
Ke Bao's avatar
Ke Bao committed
30
    get_tp_group,
Liangsheng Yin's avatar
Liangsheng Yin committed
31
32
    tensor_model_parallel_all_reduce,
)
33
34
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.layernorm import RMSNorm
35
36
37
38
39
40
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
41
from sglang.srt.layers.logits_processor import LogitsProcessor
Ke Bao's avatar
Ke Bao committed
42
43
from sglang.srt.layers.moe.ep_moe.layer import EPMoE
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
44
from sglang.srt.layers.quantization.base_config import QuantizationConfig
HandH1998's avatar
HandH1998 committed
45
46
47
from sglang.srt.layers.quantization.fp8_utils import (
    block_quant_to_tensor_quant,
    input_to_float8,
48
    normalize_e4m3fn_to_e4m3fnuz,
HandH1998's avatar
HandH1998 committed
49
)
Liangsheng Yin's avatar
Liangsheng Yin committed
50
from sglang.srt.layers.radix_attention import RadixAttention
51
from sglang.srt.layers.rotary_embedding import get_rope
52
53
54
55
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
56
from sglang.srt.managers.schedule_batch import global_server_args_dict
57
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
58
from sglang.srt.model_loader.weight_utils import default_weight_loader
59
60
61
from sglang.srt.utils import is_flashinfer_available, is_hip

is_hip_ = is_hip()
62

63
if is_flashinfer_available():
64
    from flashinfer import bmm_fp8
Liangsheng Yin's avatar
Liangsheng Yin committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100


class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


Ke Bao's avatar
Ke Bao committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
class MoEGate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.weight = nn.Parameter(
            torch.empty((config.n_routed_experts, config.hidden_size))
        )
        if config.topk_method == "noaux_tc":
            self.e_score_correction_bias = nn.Parameter(
                torch.empty((config.n_routed_experts))
            )
        else:
            self.e_score_correction_bias = None

    def forward(self, hidden_states):
        logits = F.linear(hidden_states, self.weight, None)
        return logits


Liangsheng Yin's avatar
Liangsheng Yin committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
        self.routed_scaling_factor = config.routed_scaling_factor
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

Ke Bao's avatar
Ke Bao committed
143
144
        self.gate = MoEGate(config=config)

xiaobochen's avatar
xiaobochen committed
145
146
        MoEImpl = EPMoE if global_server_args_dict["enable_ep_moe"] else FusedMoE
        self.experts = MoEImpl(
Liangsheng Yin's avatar
Liangsheng Yin committed
147
148
149
150
151
152
153
154
155
            num_experts=config.n_routed_experts,
            top_k=config.num_experts_per_tok,
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
            topk_group=config.topk_group,
Ke Bao's avatar
Ke Bao committed
156
            correction_bias=self.gate.e_score_correction_bias,
Liangsheng Yin's avatar
Liangsheng Yin committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        )

        if config.n_shared_experts is not None:
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
            )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        num_tokens, hidden_dim = hidden_states.shape
        hidden_states = hidden_states.view(-1, hidden_dim)
        if self.n_shared_experts is not None:
            shared_output = self.shared_experts(hidden_states)
        # router_logits: (num_tokens, n_experts)
Ke Bao's avatar
Ke Bao committed
175
        router_logits = self.gate(hidden_states)
Liangsheng Yin's avatar
Liangsheng Yin committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        final_hidden_states = (
            self.experts(hidden_states=hidden_states, router_logits=router_logits)
            * self.routed_scaling_factor
        )
        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)

        return final_hidden_states.view(num_tokens, hidden_dim)


def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


class DeepseekV2Attention(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
        layer_id=None,
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
        self.num_heads = num_heads
        tp_size = get_tensor_model_parallel_world_size()
        assert num_heads % tp_size == 0
        self.num_local_heads = num_heads // tp_size
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        if self.q_lora_rank is not None:
            self.q_a_proj = ReplicatedLinear(
                self.hidden_size,
                self.q_lora_rank,
                bias=False,
                quant_config=quant_config,
            )
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
                bias=False,
                quant_config=quant_config,
            )
        else:
            self.q_proj = ColumnParallelLinear(
                self.hidden_size,
                self.num_heads * self.qk_head_dim,
                bias=False,
                quant_config=quant_config,
            )

        self.kv_a_proj_with_mqa = ReplicatedLinear(
            self.hidden_size,
            self.kv_lora_rank + self.qk_rope_head_dim,
            bias=False,
            quant_config=quant_config,
        )
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
        )
273
        rope_scaling["rope_type"] = "deepseek_yarn"
274
        self.rotary_emb = get_rope(
Liangsheng Yin's avatar
Liangsheng Yin committed
275
276
277
278
279
280
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
281
            device=global_server_args_dict["device"],
Liangsheng Yin's avatar
Liangsheng Yin committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale

        # TODO, support head_size 192
        self.attn = RadixAttention(
            self.num_local_heads,
            256,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
303
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
304
305
306
307
308
309
310
311
312
    ) -> torch.Tensor:
        if self.q_lora_rank is not None:
            q = self.q_a_proj(hidden_states)[0]
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
313
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
Liangsheng Yin's avatar
Liangsheng Yin committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
        latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe
        q = torch.nn.functional.pad(q, [0, 256 - self.qk_head_dim], value=0).view(
            -1, self.num_local_heads * 256
        )
        k = torch.nn.functional.pad(k, [0, 256 - self.qk_head_dim], value=0).view(
            -1, self.num_local_heads * 256
        )
        v = torch.nn.functional.pad(v, [0, 256 - self.v_head_dim], value=0).view(
            -1, self.num_local_heads * 256
        )
336
        attn_output = self.attn(q, k, v, forward_batch)
Liangsheng Yin's avatar
Liangsheng Yin committed
337
338
339
340
341
342
343
        attn_output = attn_output.view(-1, self.num_local_heads, 256)[
            ..., : self.v_head_dim
        ].reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output


344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
        layer_id=None,
Ke Bao's avatar
Ke Bao committed
361
        use_dp=False,
362
363
364
365
366
367
368
369
370
371
372
373
374
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
        self.num_heads = num_heads
        tp_size = get_tensor_model_parallel_world_size()
        assert num_heads % tp_size == 0
Ke Bao's avatar
Ke Bao committed
375
        self.num_local_heads = num_heads if use_dp else num_heads // tp_size
376
377
378
379
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

Ke Bao's avatar
Ke Bao committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        if use_dp:
            # For data parallel attention
            if self.q_lora_rank is not None:
                self.q_a_proj = ReplicatedLinear(
                    self.hidden_size,
                    self.q_lora_rank,
                    bias=False,
                    quant_config=quant_config,
                )
                self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
                self.q_b_proj = ReplicatedLinear(
                    q_lora_rank,
                    self.num_heads * self.qk_head_dim,
                    bias=False,
                    quant_config=quant_config,
                )
            else:
                self.q_proj = ReplicatedLinear(
                    self.hidden_size,
                    self.num_heads * self.qk_head_dim,
                    bias=False,
                    quant_config=quant_config,
                )
            self.kv_b_proj = ReplicatedLinear(
                self.kv_lora_rank,
                self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
406
407
408
                bias=False,
                quant_config=quant_config,
            )
Ke Bao's avatar
Ke Bao committed
409
410
411
412
            # O projection.
            self.o_proj = ReplicatedLinear(
                self.num_heads * self.v_head_dim,
                self.hidden_size,
413
414
415
416
                bias=False,
                quant_config=quant_config,
            )
        else:
Ke Bao's avatar
Ke Bao committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
            # For tensor parallel attention
            if self.q_lora_rank is not None:
                self.q_a_proj = ReplicatedLinear(
                    self.hidden_size,
                    self.q_lora_rank,
                    bias=False,
                    quant_config=quant_config,
                )
                self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
                self.q_b_proj = ColumnParallelLinear(
                    q_lora_rank,
                    self.num_heads * self.qk_head_dim,
                    bias=False,
                    quant_config=quant_config,
                )
            else:
                self.q_proj = ColumnParallelLinear(
                    self.hidden_size,
                    self.num_heads * self.qk_head_dim,
                    bias=False,
                    quant_config=quant_config,
                )
            self.kv_b_proj = ColumnParallelLinear(
                self.kv_lora_rank,
                self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
                bias=False,
                quant_config=quant_config,
            )
            # O projection.
            self.o_proj = RowParallelLinear(
                self.num_heads * self.v_head_dim,
448
449
450
451
452
453
454
455
456
457
458
459
                self.hidden_size,
                bias=False,
                quant_config=quant_config,
            )

        self.kv_a_proj_with_mqa = ReplicatedLinear(
            self.hidden_size,
            self.kv_lora_rank + self.qk_rope_head_dim,
            bias=False,
            quant_config=quant_config,
        )
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
Ke Bao's avatar
Ke Bao committed
460
461
462
463

        if rope_scaling:
            rope_scaling["rope_type"] = "deepseek_yarn"

464
465
466
467
468
469
470
471
472
473
474
475
476
477
        self.rotary_emb = get_rope(
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale
Ke Bao's avatar
Ke Bao committed
478
479
        else:
            self.rotary_emb.forward = self.rotary_emb.forward_native
480

481
        self.attn_mqa = RadixAttention(
482
483
484
485
486
487
488
489
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
        )

490
491
492
493
494
495
496
497
498
        self.attn_mha = RadixAttention(
            self.num_local_heads,
            self.qk_nope_head_dim + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
            v_head_dim=self.v_head_dim,
        )

Ke Bao's avatar
Ke Bao committed
499
500
        self.w_kc = None
        self.w_vc = None
501
        self.w_scale = None
502
503
504
505
506

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
507
        forward_batch: ForwardBatch,
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    ) -> torch.Tensor:
        # Use normal computation for prefill and use weight absorption for extend/decode
        if (
            forward_batch.forward_mode.is_extend()
            and forward_batch.extend_prefix_lens.sum() == 0
        ):
            return self.forward_normal(positions, hidden_states, forward_batch)
        else:
            return self.forward_absorb(positions, hidden_states, forward_batch)

    def forward_normal(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        if self.q_lora_rank is not None:
            q = self.q_a_proj(hidden_states)[0]
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

    def forward_absorb(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
565
566
567
568
569
570
571
572
573
574
575
576
577
578
    ) -> torch.Tensor:
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
            q = self.q_a_proj(hidden_states)[0]
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
579

580
581
582
583
584
585
586
        if self.w_kc.dtype == torch.float8_e4m3fnuz:
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_kc.dtype == torch.float8_e4m3fn:
587
588
589
590
591
592
593
594
595
            q_nope_val, q_nope_scale = input_to_float8(
                q_nope.transpose(0, 1), torch.float8_e4m3fn
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
596

Ke Bao's avatar
Ke Bao committed
597
598
599
600
        latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
601
        k_input[..., : self.kv_lora_rank] = v_input
Ke Bao's avatar
Ke Bao committed
602
        k_pe = k_input[..., self.kv_lora_rank :]
603
604
605
606
607

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q_input[..., self.kv_lora_rank :] = q_pe
        k_input[..., self.kv_lora_rank :] = k_pe

608
        attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
609
610
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

611
612
613
614
615
616
617
        if self.w_vc.dtype == torch.float8_e4m3fnuz:
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_vc.dtype == torch.float8_e4m3fn:
618
619
620
621
622
623
624
625
626
627
628
629
630
            attn_output_val, attn_output_scale = input_to_float8(
                attn_output.transpose(0, 1), torch.float8_e4m3fn
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
631
632
633
634
635
        output, _ = self.o_proj(attn_output)

        return output


Ke Bao's avatar
Ke Bao committed
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
def all_gather(
    input_tensor: torch.Tensor, forward_batch: ForwardBatch, rank, world_size, group
):
    if world_size == 1:
        return input_tensor

    all_lens = forward_batch.global_num_tokens
    max_len = max(forward_batch.global_num_tokens)

    padded_tensor = torch.nn.functional.pad(
        input_tensor, (0, 0, 0, max_len - input_tensor.shape[0])
    )

    torch.distributed.all_gather_into_tensor(
        forward_batch.gathered_buffer, padded_tensor, group=group
    )

    gathered_tensors = torch.concat(
        [
            forward_batch.gathered_buffer[i * max_len : i * max_len + all_lens[i]]
            for i in range(world_size)
        ]
    )

    start_index = 0 if rank == 0 else sum(all_lens[:rank])
    end_index = start_index + all_lens[rank]

    return gathered_tensors, start_index, end_index


Liangsheng Yin's avatar
Liangsheng Yin committed
666
667
668
669
670
671
672
673
674
675
676
677
678
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
Ke Bao's avatar
Ke Bao committed
679
680
681
682
683
684
685
686
        self.enable_dp_attention = (
            not global_server_args_dict["disable_mla"]
            and global_server_args_dict["enable_dp_attention"]
        )
        if self.enable_dp_attention:
            self.tp_rank = get_tensor_model_parallel_rank()
            self.tp_size = get_tensor_model_parallel_world_size()
            self.tp_group = get_tp_group().device_group
Ke Bao's avatar
Ke Bao committed
687
        if not global_server_args_dict["disable_mla"]:
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
            self.self_attn = DeepseekV2AttentionMLA(
                config=config,
                hidden_size=self.hidden_size,
                num_heads=config.num_attention_heads,
                qk_nope_head_dim=config.qk_nope_head_dim,
                qk_rope_head_dim=config.qk_rope_head_dim,
                v_head_dim=config.v_head_dim,
                q_lora_rank=(
                    config.q_lora_rank if hasattr(config, "q_lora_rank") else None
                ),
                kv_lora_rank=config.kv_lora_rank,
                rope_theta=rope_theta,
                rope_scaling=rope_scaling,
                max_position_embeddings=max_position_embeddings,
                quant_config=quant_config,
                layer_id=layer_id,
Ke Bao's avatar
Ke Bao committed
704
                use_dp=self.enable_dp_attention,
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
            )
        else:
            self.self_attn = DeepseekV2Attention(
                config=config,
                hidden_size=self.hidden_size,
                num_heads=config.num_attention_heads,
                qk_nope_head_dim=config.qk_nope_head_dim,
                qk_rope_head_dim=config.qk_rope_head_dim,
                v_head_dim=config.v_head_dim,
                q_lora_rank=(
                    config.q_lora_rank if hasattr(config, "q_lora_rank") else None
                ),
                kv_lora_rank=config.kv_lora_rank,
                rope_theta=rope_theta,
                rope_scaling=rope_scaling,
                max_position_embeddings=max_position_embeddings,
                quant_config=quant_config,
                layer_id=layer_id,
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
        if (
            config.n_routed_experts is not None
            and layer_id >= config.first_k_dense_replace
            and layer_id % config.moe_layer_freq == 0
        ):
            self.mlp = DeepseekV2MoE(config=config, quant_config=quant_config)
        else:
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
            )
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
746
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
747
748
749
        residual: Optional[torch.Tensor],
    ) -> torch.Tensor:
        # Self Attention
Ke Bao's avatar
Ke Bao committed
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
        if not forward_batch.forward_mode.is_idle():
            if residual is None:
                residual = hidden_states
                hidden_states = self.input_layernorm(hidden_states)
            else:
                hidden_states, residual = self.input_layernorm(hidden_states, residual)

            hidden_states = self.self_attn(
                positions=positions,
                hidden_states=hidden_states,
                forward_batch=forward_batch,
            )
            hidden_states, residual = self.post_attention_layernorm(
                hidden_states, residual
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
765
766

        # Fully Connected
Ke Bao's avatar
Ke Bao committed
767
768
769
770
771
772
773
774
775
        if self.enable_dp_attention:
            hidden_states, start_idx, end_idx = all_gather(
                hidden_states, forward_batch, self.tp_rank, self.tp_size, self.tp_group
            )
            hidden_states = self.mlp(hidden_states)
            hidden_states = hidden_states[start_idx:end_idx]
        else:
            hidden_states = self.mlp(hidden_states)

Liangsheng Yin's avatar
Liangsheng Yin committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
        return hidden_states, residual


class DeepseekV2Model(nn.Module):

    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
Ke Bao's avatar
Ke Bao committed
795
            enable_tp=not global_server_args_dict["enable_dp_attention"],
Liangsheng Yin's avatar
Liangsheng Yin committed
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
        )
        self.layers = nn.ModuleList(
            [
                DeepseekV2DecoderLayer(
                    config,
                    layer_id,
                    quant_config=quant_config,
                )
                for layer_id in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
813
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
814
815
816
817
818
819
    ) -> torch.Tensor:
        hidden_states = self.embed_tokens(input_ids)
        residual = None
        for i in range(len(self.layers)):
            layer = self.layers[i]
            hidden_states, residual = layer(
820
                positions, hidden_states, forward_batch, residual
Liangsheng Yin's avatar
Liangsheng Yin committed
821
            )
Ke Bao's avatar
Ke Bao committed
822
823
        if not forward_batch.forward_mode.is_idle():
            hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
824
825
826
827
828
829
830
831
832
833
834
835
836
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
    ) -> None:
        super().__init__()
        self.config = config
        self.quant_config = quant_config
837
        self.model = DeepseekV2Model(config, quant_config)
Ke Bao's avatar
Ke Bao committed
838
839
840
841
842
843
844
845
846
847
848
849
        if global_server_args_dict["enable_dp_attention"]:
            self.lm_head = ReplicatedLinear(
                config.hidden_size,
                config.vocab_size,
                bias=False,
            )
            self.logits_processor = LogitsProcessor(config, skip_all_gather=True)
        else:
            self.lm_head = ParallelLMHead(
                config.vocab_size, config.hidden_size, quant_config=quant_config
            )
            self.logits_processor = LogitsProcessor(config)
Liangsheng Yin's avatar
Liangsheng Yin committed
850

851
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
852
853
854
855
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
856
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
857
    ) -> torch.Tensor:
858
        hidden_states = self.model(input_ids, positions, forward_batch)
859
860
861
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head, forward_batch
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
862
863
864
865
866
867
868
869
870
871

    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
xiaobochen's avatar
xiaobochen committed
872
873
        MoEImpl = EPMoE if global_server_args_dict["enable_ep_moe"] else FusedMoE
        expert_params_mapping = MoEImpl.make_expert_params_mapping(
Liangsheng Yin's avatar
Liangsheng Yin committed
874
875
876
877
878
879
880
881
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
            num_experts=self.config.n_routed_experts,
        )

        params_dict = dict(self.named_parameters())
        for name, loaded_weight in weights:
HandH1998's avatar
HandH1998 committed
882
883
884
885
886
887
888
889
890
891
            # TODO(HandH1998): Modify it when nextn is supported.
            if hasattr(self.config, "num_nextn_predict_layers"):
                num_nextn_layers = self.config.num_nextn_predict_layers
                if num_nextn_layers > 0 and name.startswith("model.layers"):
                    name_list = name.split(".")
                    if (
                        len(name_list) >= 3
                        and int(name_list[2]) >= self.config.num_hidden_layers
                    ):
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
            if "rotary_emb.inv_freq" in name:
                continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
925
                        name,
Liangsheng Yin's avatar
Liangsheng Yin committed
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue

                    param = params_dict[name]
                    weight_loader = getattr(
                        param, "weight_loader", default_weight_loader
                    )
                    weight_loader(param, loaded_weight)

Ke Bao's avatar
Ke Bao committed
941
        if not global_server_args_dict["disable_mla"]:
Ke Bao's avatar
Ke Bao committed
942
943
            for layer_id in range(self.config.num_hidden_layers):
                self_attn = self.model.layers[layer_id].self_attn
Ke Bao's avatar
Ke Bao committed
944
945
946
947
948
949
950
951
952
953
954
955
                if hasattr(self_attn.kv_b_proj, "qweight"):
                    # AWQ compatible
                    w = ops.awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                        0,
                        0,
                        0,
                    ).T
                else:
                    w = self_attn.kv_b_proj.weight
HandH1998's avatar
HandH1998 committed
956
957
                # NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
                # This may affect the accuracy of fp8 model.
958
959
960
                if hasattr(self.quant_config, "weight_block_size") and w.dtype in (
                    torch.float8_e4m3fn,
                    torch.float8_e4m3fnuz,
HandH1998's avatar
HandH1998 committed
961
962
963
964
                ):
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
965
966
967
968
969
970
971
972
973
974
                        if is_hip_:
                            weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                                weight=w,
                                weight_scale=self_attn.kv_b_proj.weight_scale_inv,
                                input_scale=None,
                            )
                        else:
                            weight = w
                            weight_scale = self_attn.kv_b_proj.weight_scale_inv

HandH1998's avatar
HandH1998 committed
975
                        w, scale = block_quant_to_tensor_quant(
976
                            weight, weight_scale, weight_block_size
HandH1998's avatar
HandH1998 committed
977
978
                        )
                        self_attn.w_scale = scale
Ke Bao's avatar
Ke Bao committed
979
                w_kc, w_vc = w.unflatten(
Ke Bao's avatar
Ke Bao committed
980
981
                    0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
                ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
982
983
                self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
                self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
HandH1998's avatar
HandH1998 committed
984
985
986
987
                if (
                    hasattr(self_attn.kv_b_proj, "weight_scale")
                    and self_attn.w_scale is None
                ):
988
                    self_attn.w_scale = self_attn.kv_b_proj.weight_scale
989
990
                    if is_hip_:
                        self_attn.w_scale *= 2.0
Ke Bao's avatar
Ke Bao committed
991

Liangsheng Yin's avatar
Liangsheng Yin committed
992

HandH1998's avatar
HandH1998 committed
993
994
995
996
997
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass


EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM]